論文の概要: A Comparative Analysis of Machine Learning Models for DDoS Detection in IoT Networks
- arxiv url: http://arxiv.org/abs/2411.05890v1
- Date: Fri, 08 Nov 2024 12:23:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:10:29.126845
- Title: A Comparative Analysis of Machine Learning Models for DDoS Detection in IoT Networks
- Title(参考訳): IoTネットワークにおけるDDoS検出のための機械学習モデルの比較分析
- Authors: Sushil Shakya, Robert Abbas,
- Abstract要約: 通常のネットワークトラフィックからのDDoS攻撃の検出において、XGBoostのようなさまざまな機械学習モデルの有効性を評価する。
これらのモデルの有効性は分析され、機械学習がIoTセキュリティフレームワークを大幅に強化する方法が示されている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper presents the detection of DDoS attacks in IoT networks using machine learning models. Their rapid growth has made them highly susceptible to various forms of cyberattacks, many of whose security procedures are implemented in an irregular manner. It evaluates the efficacy of different machine learning models, such as XGBoost, K-Nearest Neighbours, Stochastic Gradient Descent, and Na\"ive Bayes, in detecting DDoS attacks from normal network traffic. Each model has been explained on several performance metrics, such as accuracy, precision, recall, and F1-score to understand the suitability of each model in real-time detection and response against DDoS threats. This comparative analysis will, therefore, enumerate the unique strengths and weaknesses of each model with respect to the IoT environments that are dynamic and hence moving in nature. The effectiveness of these models is analyzed, showing how machine learning can greatly enhance IoT security frameworks, offering adaptive, efficient, and reliable DDoS detection capabilities. These findings have shown the potential of machine learning in addressing the pressing need for robust IoT security solutions that can mitigate modern cyber threats and assure network integrity.
- Abstract(参考訳): 本稿では,機械学習モデルを用いたIoTネットワークにおけるDDoS攻撃の検出について述べる。
その急速な成長は、セキュリティ手順が不規則な方法で実施されている様々なサイバー攻撃の影響を非常に受けやすくしている。
通常のネットワークトラフィックからDDoS攻撃を検出する上で、XGBoost、K-Nearest Neighbours、Stochastic Gradient Descent、Na\"ive Bayesなど、さまざまな機械学習モデルの有効性を評価する。
各モデルは、リアルタイム検出とDDoS脅威に対する応答において、各モデルの適合性を理解するために、精度、精度、リコール、F1スコアなど、いくつかのパフォーマンス指標で説明されている。
この比較分析は、動的で自然に移動するIoT環境に関して、各モデルのユニークな長所と短所を列挙する。
これらのモデルの有効性を分析し、機械学習がIoTセキュリティフレームワークを大幅に強化し、適応性、効率的、信頼性の高いDDoS検出機能を提供する方法を示している。
これらの調査結果は、現代的なサイバー脅威を軽減し、ネットワークの整合性を保証する、堅牢なIoTセキュリティソリューションの必要性に、機械学習が対処する可能性を示している。
関連論文リスト
- Towards Efficient Machine Learning Method for IoT DDoS Attack Detection [0.0]
IoTデバイスによるDDoS攻撃は、インターネット上で実行されるアプリケーションの大幅なダウンタイムを引き起こす可能性がある。
本稿では,最も有用な機能のみを選択し,それらの機能をXGBoostモデルに渡すハイブリッド機能選択アルゴリズムを提案する。
私たちのモデルは、CIC IDS 2017データセットで99.993%の精度、CIC IoT 2023データセットで97.64%のリコールを実現しています。
論文 参考訳(メタデータ) (2024-08-16T09:41:54Z) - Enhancing IoT Security Against DDoS Attacks through Federated Learning [0.0]
IoT(Internet of Things)は、物理デバイスとデジタル領域の間の変換接続を基盤としている。
従来のDDoS緩和アプローチは、IoTエコシステムの複雑さを扱うには不十分である。
本稿では、フェデレートラーニングの力を活用して、IoTネットワークのDDoS攻撃に対するセキュリティを強化する革新的な戦略を紹介する。
論文 参考訳(メタデータ) (2024-03-16T16:45:28Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Learn from the Past: A Proxy Guided Adversarial Defense Framework with
Self Distillation Regularization [53.04697800214848]
敵対的訓練(AT)は、ディープラーニングモデルの堅牢性を固める上で重要な要素である。
AT方式は、目標モデルの防御のために直接反復的な更新を頼りにしており、不安定な訓練や破滅的なオーバーフィッティングといった障害に頻繁に遭遇する。
汎用プロキシガイド型防衛フレームワークLAST(bf Pbf astから学ぶ)を提案する。
論文 参考訳(メタデータ) (2023-10-19T13:13:41Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
調査は、センサーの故障やノイズなど、様々な摂動を扱うモデルの能力に焦点を当てている。
我々は,これらのモデルの一般化と伝達学習能力を,アウト・オブ・ディストリビューション(OOD)サンプルに公開することによって検証する。
論文 参考訳(メタデータ) (2023-06-13T12:43:59Z) - Unsupervised Ensemble Based Deep Learning Approach for Attack Detection
in IoT Network [0.0]
モノのインターネット(Internet of Things, IoT)は、デバイスやものをインターネット上でコントロールすることによって、生活を変えてきた。
IoTネットワークをダウンさせるために、攻撃者はこれらのデバイスを使用してさまざまなネットワーク攻撃を行うことができる。
本稿では,非ラベルデータセットからIoTネットワークにおける新たな,あるいは未知の攻撃を検出可能な,教師なしアンサンブル学習モデルを開発した。
論文 参考訳(メタデータ) (2022-07-16T11:12:32Z) - Dependable Intrusion Detection System for IoT: A Deep Transfer
Learning-based Approach [0.0]
本論文は,いくつかの既存手法より優れた深層移動学習型信頼型IDSモデルを提案する。
これは、少量のラベル付きデータに対して、通常のシナリオとアタックシナリオを特定するのに最も適している、効果的な属性選択を含んでいる。
また、信頼性の高い深層移動学習ベースのResNetモデルや、実世界のデータを考慮した評価も含んでいる。
論文 参考訳(メタデータ) (2022-04-11T02:46:22Z) - DST: Dynamic Substitute Training for Data-free Black-box Attack [79.61601742693713]
そこで本研究では,対象モデルからより高速に学習するための代用モデルの促進を目的とした,新しい動的代用トレーニング攻撃手法を提案する。
タスク駆動型グラフに基づく構造情報学習の制約を導入し、生成したトレーニングデータの質を向上させる。
論文 参考訳(メタデータ) (2022-04-03T02:29:11Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - AdIoTack: Quantifying and Refining Resilience of Decision Tree Ensemble
Inference Models against Adversarial Volumetric Attacks on IoT Networks [1.1172382217477126]
本稿では,敵攻撃に対する決定木の脆弱性を強調するシステムであるAdIoTackを紹介する。
最悪のシナリオのモデルを評価するために、AdIoTackは、ホワイトボックスの敵学習を実行し、ボリューム攻撃を成功させる。
モデルがIoTデバイスに対する非敵のボリューム攻撃を検知し、多くの敵の攻撃を欠いていることを実証する。
論文 参考訳(メタデータ) (2022-03-18T08:18:03Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
武器の脅威検出とライブビデオからの攻撃的な行動は、潜在的に致命的な事故の迅速検出と予防に使用できる。
これを実現する一つの方法は、人工知能と、特に画像分析のための機械学習を使用することです。
従来のモノリシックなエンド・ツー・エンドのディープラーニングモデルと、セマンティクスセグメンテーションによって火花を検知する単純なニューラルネットワークのアンサンブルに基づく前述したモデルを比較した。
論文 参考訳(メタデータ) (2020-12-17T15:19:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。