IoTCO2: Assessing the End-To-End Carbon Footprint of Internet-of-Things-Enabled Deep Learning
- URL: http://arxiv.org/abs/2403.10984v2
- Date: Fri, 13 Sep 2024 16:21:58 GMT
- Title: IoTCO2: Assessing the End-To-End Carbon Footprint of Internet-of-Things-Enabled Deep Learning
- Authors: Fan Chen, Shahzeen Attari, Gayle Buck, Lei Jiang,
- Abstract summary: Deep learning (DL) models are increasingly deployed on Internet of Things (IoT) devices for data processing.
carb is an end-to-end tool for precise carbon footprint estimation in IoT-enabled DL.
- Score: 6.582643137531881
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To improve privacy and ensure quality-of-service (QoS), deep learning (DL) models are increasingly deployed on Internet of Things (IoT) devices for data processing, significantly increasing the carbon footprint associated with DL on IoT, covering both operational and embodied aspects. Existing operational energy predictors often overlook quantized DL models and emerging neural processing units (NPUs), while embodied carbon footprint modeling tools neglect non-computing hardware components common in IoT devices, creating a gap in accurate carbon footprint modeling tools for IoT-enabled DL. This paper introduces \textit{\carb}, an end-to-end tool for precise carbon footprint estimation in IoT-enabled DL, with deviations as low as 5\% for operational and 3.23\% for embodied carbon footprints compared to actual measurements across various DL models. Additionally, practical applications of \carb~are showcased through multiple user case studies.
Related papers
- Fine-Tuning and Deploying Large Language Models Over Edges: Issues and Approaches [64.42735183056062]
Large language models (LLMs) have transitioned from specialized models to versatile foundation models.
LLMs exhibit impressive zero-shot ability, however, require fine-tuning on local datasets and significant resources for deployment.
arXiv Detail & Related papers (2024-08-20T09:42:17Z) - BDC-Occ: Binarized Deep Convolution Unit For Binarized Occupancy Network [55.21288428359509]
Existing 3D occupancy networks demand significant hardware resources, hindering the deployment of edge devices.
We propose a novel binarized deep convolution (BDC) unit that effectively enhances performance while increasing the number of binarized convolutional layers.
Our BDC-Occ model is created by applying the proposed BDC unit to binarize the existing 3D occupancy networks.
arXiv Detail & Related papers (2024-05-27T10:44:05Z) - LACS: Learning-Augmented Algorithms for Carbon-Aware Resource Scaling with Uncertain Demand [1.423958951481749]
This paper studies the online carbon-aware resource scaling problem with unknown job lengths (OCSU)
We propose LACS, a theoretically robust learning-augmented algorithm that solves OCSU.
LACS achieves a 32% reduction in carbon footprint compared to the deadline-aware carbon-agnostic execution of the job.
arXiv Detail & Related papers (2024-03-29T04:54:22Z) - EPIM: Efficient Processing-In-Memory Accelerators based on Epitome [78.79382890789607]
We introduce the Epitome, a lightweight neural operator offering convolution-like functionality.
On the software side, we evaluate epitomes' latency and energy on PIM accelerators.
We introduce a PIM-aware layer-wise design method to enhance their hardware efficiency.
arXiv Detail & Related papers (2023-11-12T17:56:39Z) - Defect Classification in Additive Manufacturing Using CNN-Based Vision
Processing [76.72662577101988]
This paper examines two scenarios: first, using convolutional neural networks (CNNs) to accurately classify defects in an image dataset from AM and second, applying active learning techniques to the developed classification model.
This allows the construction of a human-in-the-loop mechanism to reduce the size of the data required to train and generate training data.
arXiv Detail & Related papers (2023-07-14T14:36:58Z) - Machine Guided Discovery of Novel Carbon Capture Solvents [48.7576911714538]
Machine learning offers a promising method for reducing the time and resource burdens of materials development.
We have developed an end-to-end "discovery cycle" to select new aqueous amines compatible with the commercially viable acid gas scrubbing carbon capture.
The prediction process shows 60% accuracy against experiment for both material parameters and 80% for a single parameter on an external test set.
arXiv Detail & Related papers (2023-03-24T18:32:38Z) - Measuring the Carbon Intensity of AI in Cloud Instances [91.28501520271972]
We provide a framework for measuring software carbon intensity, and propose to measure operational carbon emissions.
We evaluate a suite of approaches for reducing emissions on the Microsoft Azure cloud compute platform.
arXiv Detail & Related papers (2022-06-10T17:04:04Z) - Carbon Footprint of Selecting and Training Deep Learning Models for
Medical Image Analysis [0.2936007114555107]
We focus on the carbon footprint of developing deep learning models for medical image analysis (MIA)
We present and compare the features of four tools to quantify the carbon footprint of DL.
We discuss simple strategies to cut-down the environmental impact that can make model selection and training processes more efficient.
arXiv Detail & Related papers (2022-03-04T09:22:47Z) - Curb Your Carbon Emissions: Benchmarking Carbon Emissions in Machine
Translation [0.0]
We study the carbon efficiency and look for alternatives to reduce the overall environmental impact of training models.
In our work, we assess the performance of models for machine translation, across multiple language pairs.
We examine the various components of these models to analyze aspects of our pipeline that can be optimized to reduce these carbon emissions.
arXiv Detail & Related papers (2021-09-26T12:30:10Z) - Carbontracker: Tracking and Predicting the Carbon Footprint of Training
Deep Learning Models [0.3441021278275805]
Machine learning (ML) may become a significant contributor to climate change if this exponential trend continues.
We propose that energy and carbon footprint of model development and training is reported alongside performance metrics using tools like Carbontracker.
arXiv Detail & Related papers (2020-07-06T20:24:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.