LACS: Learning-Augmented Algorithms for Carbon-Aware Resource Scaling with Uncertain Demand
- URL: http://arxiv.org/abs/2404.15211v2
- Date: Tue, 4 Jun 2024 04:34:24 GMT
- Title: LACS: Learning-Augmented Algorithms for Carbon-Aware Resource Scaling with Uncertain Demand
- Authors: Roozbeh Bostandoost, Adam Lechowicz, Walid A. Hanafy, Noman Bashir, Prashant Shenoy, Mohammad Hajiesmaili,
- Abstract summary: This paper studies the online carbon-aware resource scaling problem with unknown job lengths (OCSU)
We propose LACS, a theoretically robust learning-augmented algorithm that solves OCSU.
LACS achieves a 32% reduction in carbon footprint compared to the deadline-aware carbon-agnostic execution of the job.
- Score: 1.423958951481749
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motivated by an imperative to reduce the carbon emissions of cloud data centers, this paper studies the online carbon-aware resource scaling problem with unknown job lengths (OCSU) and applies it to carbon-aware resource scaling for executing computing workloads. The task is to dynamically scale resources (e.g., the number of servers) assigned to a job of unknown length such that it is completed before a deadline, with the objective of reducing the carbon emissions of executing the workload. The total carbon emissions of executing a job originate from the emissions of running the job and excess carbon emitted while switching between different scales (e.g., due to checkpoint and resume). Prior work on carbon-aware resource scaling has assumed accurate job length information, while other approaches have ignored switching losses and require carbon intensity forecasts. These assumptions prohibit the practical deployment of prior work for online carbon-aware execution of scalable computing workload. We propose LACS, a theoretically robust learning-augmented algorithm that solves OCSU. To achieve improved practical average-case performance, LACS integrates machine-learned predictions of job length. To achieve solid theoretical performance, LACS extends the recent theoretical advances on online conversion with switching costs to handle a scenario where the job length is unknown. Our experimental evaluations demonstrate that, on average, the carbon footprint of LACS lies within 1.2% of the online baseline that assumes perfect job length information and within 16% of the offline baseline that, in addition to the job length, also requires accurate carbon intensity forecasts. Furthermore, LACS achieves a 32% reduction in carbon footprint compared to the deadline-aware carbon-agnostic execution of the job.
Related papers
- The Sunk Carbon Fallacy: Rethinking Carbon Footprint Metrics for Effective Carbon-Aware Scheduling [2.562727244613512]
We evaluate carbon-aware job scheduling and placement on a given set of servers for a number of carbon accounting metrics.
We study the factors that affect the added carbon cost of such suboptimal decision-making.
arXiv Detail & Related papers (2024-10-19T12:23:59Z) - CarbonClipper: Optimal Algorithms for Carbon-Aware Spatiotemporal Workload Management [11.029788598491077]
carbon-aware workload management seeks to address the growing environmental impact of data centers.
mathsfSOAD$ formalizes the open problem of combining general metrics and deadline constraints in the online algorithms.
rm Cscriptsize ARCscriptsize LIPPER$ is a learning-augmented algorithm that takes advantage predictions.
arXiv Detail & Related papers (2024-08-14T22:08:06Z) - Generative AI for Low-Carbon Artificial Intelligence of Things with Large Language Models [67.0243099823109]
Generative AI (GAI) holds immense potential to reduce carbon emissions of Artificial Intelligence of Things (AIoT)
In this article, we explore the potential of GAI for carbon emissions reduction and propose a novel GAI-enabled solution for low-carbon AIoT.
We propose a Large Language Model (LLM)-enabled carbon emission optimization framework, in which we design pluggable LLM and Retrieval Augmented Generation (RAG) modules.
arXiv Detail & Related papers (2024-04-28T05:46:28Z) - On the Limitations of Carbon-Aware Temporal and Spatial Workload
Shifting in the Cloud [0.6642611154902529]
We conduct a detailed data-driven analysis to understand the benefits and limitations of carbon-aware scheduling for cloud workloads.
Our findings show that while limited workload shifting can reduce carbon emissions, the practical reductions are currently far from ideal.
arXiv Detail & Related papers (2023-06-10T18:39:49Z) - Sustainable AIGC Workload Scheduling of Geo-Distributed Data Centers: A
Multi-Agent Reinforcement Learning Approach [48.18355658448509]
Recent breakthroughs in generative artificial intelligence have triggered a surge in demand for machine learning training, which poses significant cost burdens and environmental challenges due to its substantial energy consumption.
Scheduling training jobs among geographically distributed cloud data centers unveils the opportunity to optimize the usage of computing capacity powered by inexpensive and low-carbon energy.
We propose an algorithm based on multi-agent reinforcement learning and actor-critic methods to learn the optimal collaborative scheduling strategy through interacting with a cloud system built with real-life workload patterns, energy prices, and carbon intensities.
arXiv Detail & Related papers (2023-04-17T02:12:30Z) - Machine Guided Discovery of Novel Carbon Capture Solvents [48.7576911714538]
Machine learning offers a promising method for reducing the time and resource burdens of materials development.
We have developed an end-to-end "discovery cycle" to select new aqueous amines compatible with the commercially viable acid gas scrubbing carbon capture.
The prediction process shows 60% accuracy against experiment for both material parameters and 80% for a single parameter on an external test set.
arXiv Detail & Related papers (2023-03-24T18:32:38Z) - Counting Carbon: A Survey of Factors Influencing the Emissions of
Machine Learning [77.62876532784759]
Machine learning (ML) requires using energy to carry out computations during the model training process.
The generation of this energy comes with an environmental cost in terms of greenhouse gas emissions, depending on quantity used and the energy source.
We present a survey of the carbon emissions of 95 ML models across time and different tasks in natural language processing and computer vision.
arXiv Detail & Related papers (2023-02-16T18:35:00Z) - Estimating the Carbon Footprint of BLOOM, a 176B Parameter Language
Model [72.65502770895417]
We quantify the carbon footprint of BLOOM, a 176-billion parameter language model, across its life cycle.
We estimate that BLOOM's final training emitted approximately 24.7 tonnes ofcarboneqif we consider only the dynamic power consumption.
We conclude with a discussion regarding the difficulty of precisely estimating the carbon footprint of machine learning models.
arXiv Detail & Related papers (2022-11-03T17:13:48Z) - Measuring the Carbon Intensity of AI in Cloud Instances [91.28501520271972]
We provide a framework for measuring software carbon intensity, and propose to measure operational carbon emissions.
We evaluate a suite of approaches for reducing emissions on the Microsoft Azure cloud compute platform.
arXiv Detail & Related papers (2022-06-10T17:04:04Z) - Green Algorithms: Quantifying the carbon footprint of computation [0.0]
We present a framework to estimate the carbon footprint of any computational task in a standardised and reliable way.
Metrics to interpret and contextualise greenhouse gas emissions are defined, including the equivalent distance travelled by car or plane.
We develop a freely available online tool, Green Algorithms, which enables a user to estimate and report the carbon footprint of their computation.
arXiv Detail & Related papers (2020-07-15T11:05:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.