論文の概要: Mixed-Reality Digital Twins: Leveraging the Physical and Virtual Worlds for Hybrid Sim2Real Transition of Multi-Agent Reinforcement Learning Policies
- arxiv url: http://arxiv.org/abs/2403.10996v5
- Date: Thu, 20 Mar 2025 01:11:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-21 22:26:24.341064
- Title: Mixed-Reality Digital Twins: Leveraging the Physical and Virtual Worlds for Hybrid Sim2Real Transition of Multi-Agent Reinforcement Learning Policies
- Title(参考訳): Mixed-Reality Digital Twins: Multi-Agent Reinforcement Learning PoliciesのHybrid Sim2Real transitionのための物理・仮想世界を活用
- Authors: Chinmay Vilas Samak, Tanmay Vilas Samak, Venkat Narayan Krovi,
- Abstract要約: サイバー物理車両システムのためのマルチエージェント強化学習(MARL)は通常、非常に長い訓練時間を必要とする。
この研究は、オンデマンドで並列化されたワークロードを選択的にスケーリングできる混合現実のデジタルツインフレームワークを提案する。
i) エージェントと環境並列化が訓練時間に及ぼす影響, (ii) ドメインランダム化がゼロショットsim2real転送に与える影響について検討した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Multi-agent reinforcement learning (MARL) for cyber-physical vehicle systems usually requires a significantly long training time due to their inherent complexity. Furthermore, deploying the trained policies in the real world demands a feature-rich environment along with multiple physical embodied agents, which may not be feasible due to monetary, physical, energy, or safety constraints. This work seeks to address these pain points by presenting a mixed-reality digital twin framework capable of: (i) selectively scaling parallelized workloads on-demand, and (ii) evaluating the trained policies across simulation-to-reality (sim2real) experiments. The viability and performance of the proposed framework are highlighted through two representative use cases, which cover cooperative as well as competitive classes of MARL problems. We study the effect of: (i) agent and environment parallelization on training time, and (ii) systematic domain randomization on zero-shot sim2real transfer across both case studies. Results indicate up to 76.3% reduction in training time with the proposed parallelization scheme and sim2real gap as low as 2.9% using the proposed deployment method.
- Abstract(参考訳): サイバー物理車両システムのためのマルチエージェント強化学習(MARL)は通常、その固有の複雑さのために非常に長い訓練期間を必要とする。
さらに、訓練されたポリシーを現実世界に展開するには、複数の物理的実施エージェントとともに機能豊富な環境が必要であり、これは金銭的、物理的、エネルギー的、安全上の制約のために実現不可能である可能性がある。
この研究は、混合現実のデジタル双対の枠組みを提示することで、これらの痛点に対処しようとしている。
(i)並列化されたワークロードをオンデマンドで選択的にスケーリングし、
2)シミュレート・トゥ・レアル(シミュレート・トゥ・レアル)実験における学習方針の評価。
提案フレームワークの実用性と性能は,MARL問題における協調的および競合的クラスをカバーする2つの代表的なユースケースを通して強調される。
我々は以下の効果について研究する。
一 訓練時間におけるエージェント及び環境の並列化
(II) 両方のケーススタディにおけるゼロショットsim2real移動の系統的領域ランダム化。
その結果, 並列化方式による訓練時間の最大76.3%削減と, 配置方式を用いて, sim2realのギャップを2.9%低めることができた。
関連論文リスト
- Safe Model-Based Multi-Agent Mean-Field Reinforcement Learning [48.667697255912614]
平均場強化学習は、同一エージェントの無限集団と相互作用する代表エージェントのポリシーに対処する。
モデルベースの平均場強化学習アルゴリズムであるSafe-M$3$-UCRLを提案する。
本アルゴリズムは,低需要領域におけるサービスアクセシビリティを確保しつつ,重要な領域における需要を効果的に満たす。
論文 参考訳(メタデータ) (2023-06-29T15:57:07Z) - Safe Multi-agent Learning via Trapping Regions [89.24858306636816]
我々は、動的システムの定性理論から知られているトラップ領域の概念を適用し、分散学習のための共同戦略空間に安全セットを作成する。
本稿では,既知の学習力学を持つシステムにおいて,候補がトラップ領域を形成することを検証するための二分分割アルゴリズムと,学習力学が未知のシナリオに対するサンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-27T14:47:52Z) - Actively Learning Costly Reward Functions for Reinforcement Learning [56.34005280792013]
複雑な実世界の環境でエージェントを訓練することは、桁違いに高速であることを示す。
強化学習の手法を新しい領域に適用することにより、興味深く非自明な解を見つけることができることを示す。
論文 参考訳(メタデータ) (2022-11-23T19:17:20Z) - Multi-Agent Reinforcement Learning for Long-Term Network Resource
Allocation through Auction: a V2X Application [7.326507804995567]
我々は,自律エージェント間の分散意思決定として,移動エージェントの動的グループ(自動車など)からの計算タスクのオフロードを定式化する。
我々は、競争と協力のバランスをとることで、そのようなエージェントにプライベートとシステム目標の整合を動機付けるインタラクションメカニズムを設計する。
本稿では,部分的,遅延,ノイズの多い状態情報を用いて学習する,新しいマルチエージェントオンライン学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-07-29T10:29:06Z) - From Multi-agent to Multi-robot: A Scalable Training and Evaluation
Platform for Multi-robot Reinforcement Learning [12.74238738538799]
マルチエージェント強化学習(MARL)は、過去数十年間、学術や産業から広く注目を集めてきた。
これらの手法が実際のシナリオ、特にマルチロボットシステムでどのように機能するかは未だ分かっていない。
本稿では,マルチロボット強化学習(MRRL)のためのスケーラブルなエミュレーションプラットフォームSMARTを提案する。
論文 参考訳(メタデータ) (2022-06-20T06:36:45Z) - Efficient Distributed Framework for Collaborative Multi-Agent
Reinforcement Learning [17.57163419315147]
不完全な情報環境に対するマルチエージェント強化学習は研究者から広く注目を集めている。
不安定なモデルイテレーションや訓練効率の低下など、マルチエージェント強化学習には依然としていくつかの問題がある。
本稿では,アクター-ワーク-ラーナーアーキテクチャに基づく分散MARLフレームワークを設計する。
論文 参考訳(メタデータ) (2022-05-11T03:12:49Z) - Efficient Model-based Multi-agent Reinforcement Learning via Optimistic
Equilibrium Computation [93.52573037053449]
H-MARL (Hallucinated Multi-Agent Reinforcement Learning) は,環境と数回交流した後の平衡政策を学習する。
自律運転シミュレーションベンチマークにおいて,本手法を実験的に実証した。
論文 参考訳(メタデータ) (2022-03-14T17:24:03Z) - MALib: A Parallel Framework for Population-based Multi-agent
Reinforcement Learning [61.28547338576706]
人口ベースマルチエージェント強化学習(PB-MARL)は、強化学習(RL)アルゴリズムでネストした一連の手法を指す。
PB-MARLのためのスケーラブルで効率的な計算フレームワークMALibを提案する。
論文 参考訳(メタデータ) (2021-06-05T03:27:08Z) - Continuous Coordination As a Realistic Scenario for Lifelong Learning [6.044372319762058]
ゼロショット設定と少数ショット設定の両方をサポートするマルチエージェント生涯学習テストベッドを導入する。
最近のMARL法、および制限メモリおよび計算における最新のLLLアルゴリズムのベンチマークを評価します。
我々は経験的に、我々の設定で訓練されたエージェントは、以前の作業による追加の仮定なしに、未発見のエージェントとうまく協調できることを示します。
論文 参考訳(メタデータ) (2021-03-04T18:44:03Z) - The reinforcement learning-based multi-agent cooperative approach for
the adaptive speed regulation on a metallurgical pickling line [0.0]
提案手法は,基本アルゴリズムとしての数学的モデリングと協調型マルチエージェント強化学習システムを組み合わせたものである。
我々は、重工業における現実的なタスクに対して、Deep Q-Learningをどのように適用できるかを実証し、既存の自動化システムを大幅に改善した。
論文 参考訳(メタデータ) (2020-08-16T15:10:39Z) - F2A2: Flexible Fully-decentralized Approximate Actor-critic for
Cooperative Multi-agent Reinforcement Learning [110.35516334788687]
分散マルチエージェント強化学習アルゴリズムは複雑なアプリケーションでは実践的でないことがある。
本稿では,大規模で汎用的なマルチエージェント設定を扱える,柔軟な完全分散型アクター批判型MARLフレームワークを提案する。
当社のフレームワークは,大規模環境におけるスケーラビリティと安定性を実現し,情報伝達を低減できる。
論文 参考訳(メタデータ) (2020-04-17T14:56:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。