Advancing multivariate time series similarity assessment: an integrated computational approach
- URL: http://arxiv.org/abs/2403.11044v1
- Date: Sat, 16 Mar 2024 23:52:25 GMT
- Title: Advancing multivariate time series similarity assessment: an integrated computational approach
- Authors: Franck Tonle, Henri Tonnang, Milliam Ndadji, Maurice Tchendji, Armand Nzeukou, Kennedy Senagi, Saliou Niassy,
- Abstract summary: We propose an integrated computational approach for assessing the similarity of multivariate time series data.
MTASA is built upon a hybrid methodology designed to optimize time series alignment, complemented by a multiprocessing engine.
Results from this study highlight MTASA's superiority, achieving approximately 1.5 times greater accuracy and twice the speed compared to existing state-of-the-art integrated frameworks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data mining, particularly the analysis of multivariate time series data, plays a crucial role in extracting insights from complex systems and supporting informed decision-making across diverse domains. However, assessing the similarity of multivariate time series data presents several challenges, including dealing with large datasets, addressing temporal misalignments, and the need for efficient and comprehensive analytical frameworks. To address all these challenges, we propose a novel integrated computational approach known as Multivariate Time series Alignment and Similarity Assessment (MTASA). MTASA is built upon a hybrid methodology designed to optimize time series alignment, complemented by a multiprocessing engine that enhances the utilization of computational resources. This integrated approach comprises four key components, each addressing essential aspects of time series similarity assessment, thereby offering a comprehensive framework for analysis. MTASA is implemented as an open-source Python library with a user-friendly interface, making it accessible to researchers and practitioners. To evaluate the effectiveness of MTASA, we conducted an empirical study focused on assessing agroecosystem similarity using real-world environmental data. The results from this study highlight MTASA's superiority, achieving approximately 1.5 times greater accuracy and twice the speed compared to existing state-of-the-art integrated frameworks for multivariate time series similarity assessment. It is hoped that MTASA will significantly enhance the efficiency and accessibility of multivariate time series analysis, benefitting researchers and practitioners across various domains. Its capabilities in handling large datasets, addressing temporal misalignments, and delivering accurate results make MTASA a valuable tool for deriving insights and aiding decision-making processes in complex systems.
Related papers
- POGEMA: A Benchmark Platform for Cooperative Multi-Agent Navigation [76.67608003501479]
We introduce and specify an evaluation protocol defining a range of domain-related metrics computed on the basics of the primary evaluation indicators.
The results of such a comparison, which involves a variety of state-of-the-art MARL, search-based, and hybrid methods, are presented.
arXiv Detail & Related papers (2024-07-20T16:37:21Z) - SMORE: Similarity-based Hyperdimensional Domain Adaptation for
Multi-Sensor Time Series Classification [17.052624039805856]
We propose SMORE, a novel resource-efficient domain adaptation (DA) algorithm for multi-sensor time series classification.
SMORE achieves on average 1.98% higher accuracy than state-of-the-art (SOTA) DNN-based DA algorithms with 18.81x faster training and 4.63x faster inference.
arXiv Detail & Related papers (2024-02-20T18:48:49Z) - A Multi-Scale Decomposition MLP-Mixer for Time Series Analysis [14.40202378972828]
We propose MSD-Mixer, a Multi-Scale Decomposition-Mixer, which learns to explicitly decompose and represent the input time series in its different layers.
We demonstrate that MSD-Mixer consistently and significantly outperforms other state-of-the-art algorithms with better efficiency.
arXiv Detail & Related papers (2023-10-18T13:39:07Z) - Compatible Transformer for Irregularly Sampled Multivariate Time Series [75.79309862085303]
We propose a transformer-based encoder to achieve comprehensive temporal-interaction feature learning for each individual sample.
We conduct extensive experiments on 3 real-world datasets and validate that the proposed CoFormer significantly and consistently outperforms existing methods.
arXiv Detail & Related papers (2023-10-17T06:29:09Z) - Kernel-based Joint Independence Tests for Multivariate Stationary and
Non-stationary Time Series [0.6749750044497732]
We introduce kernel-based statistical tests of joint independence in multivariate time series.
We show how the method robustly uncovers significant higher-order dependencies in synthetic examples.
Our method can aid in uncovering high-order interactions in data.
arXiv Detail & Related papers (2023-05-15T10:38:24Z) - Latent Processes Identification From Multi-View Time Series [17.33428123777779]
We propose a novel framework that employs the contrastive learning technique to invert the data generative process for enhanced identifiability.
MuLTI integrates a permutation mechanism that merges corresponding overlapped variables by the establishment of an optimal transport formula.
arXiv Detail & Related papers (2023-05-14T14:21:58Z) - Robust Detection of Lead-Lag Relationships in Lagged Multi-Factor Models [61.10851158749843]
Key insights can be obtained by discovering lead-lag relationships inherent in the data.
We develop a clustering-driven methodology for robust detection of lead-lag relationships in lagged multi-factor models.
arXiv Detail & Related papers (2023-05-11T10:30:35Z) - Optimal Event Monitoring through Internet Mashup over Multivariate Time
Series [77.34726150561087]
This framework supports the services of model definitions, querying, parameter learning, model evaluations, data monitoring, decision recommendations, and web portals.
We further extend the MTSA data model and query language to support this class of problems for the services of learning, monitoring, and recommendation.
arXiv Detail & Related papers (2022-10-18T16:56:17Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - Enhancing Transformer Efficiency for Multivariate Time Series
Classification [12.128991867050487]
We propose a methodology to investigate the relationship between model efficiency and accuracy, as well as its complexity.
Comprehensive experiments on benchmark MTS datasets illustrate the effectiveness of our method.
arXiv Detail & Related papers (2022-03-28T03:25:19Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.