Decoding Continuous Character-based Language from Non-invasive Brain Recordings
- URL: http://arxiv.org/abs/2403.11183v2
- Date: Tue, 19 Mar 2024 10:09:20 GMT
- Title: Decoding Continuous Character-based Language from Non-invasive Brain Recordings
- Authors: Cenyuan Zhang, Xiaoqing Zheng, Ruicheng Yin, Shujie Geng, Jianhan Xu, Xuan Gao, Changze Lv, Zixuan Ling, Xuanjing Huang, Miao Cao, Jianfeng Feng,
- Abstract summary: We propose a novel approach to decoding continuous language from single-trial non-invasive fMRI recordings.
A character-based decoder is designed for the semantic reconstruction of continuous language characterized by inherent character structures.
The ability to decode continuous language from single trials across subjects demonstrates the promising applications of non-invasive language brain-computer interfaces.
- Score: 33.11373366800627
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deciphering natural language from brain activity through non-invasive devices remains a formidable challenge. Previous non-invasive decoders either require multiple experiments with identical stimuli to pinpoint cortical regions and enhance signal-to-noise ratios in brain activity, or they are limited to discerning basic linguistic elements such as letters and words. We propose a novel approach to decoding continuous language from single-trial non-invasive fMRI recordings, in which a three-dimensional convolutional network augmented with information bottleneck is developed to automatically identify responsive voxels to stimuli, and a character-based decoder is designed for the semantic reconstruction of continuous language characterized by inherent character structures. The resulting decoder can produce intelligible textual sequences that faithfully capture the meaning of perceived speech both within and across subjects, while existing decoders exhibit significantly inferior performance in cross-subject contexts. The ability to decode continuous language from single trials across subjects demonstrates the promising applications of non-invasive language brain-computer interfaces in both healthcare and neuroscience.
Related papers
- BrainECHO: Semantic Brain Signal Decoding through Vector-Quantized Spectrogram Reconstruction for Whisper-Enhanced Text Generation [29.78480739360263]
We propose a new multi-stage strategy for semantic brain signal decoding via vEctor-quantized speCtrogram reconstruction.
BrainECHO successively conducts: 1) autoencoding of the audio spectrogram; 2) Brain-audio latent space alignment; and 3) Semantic text generation via Whisper finetuning.
BrainECHO outperforms state-of-the-art methods under the same data split settings on two widely accepted resources.
arXiv Detail & Related papers (2024-10-19T04:29:03Z) - A multimodal LLM for the non-invasive decoding of spoken text from brain recordings [0.4187344935012482]
We propose and end-to-end multimodal LLM for decoding spoken text from fMRI signals.
The proposed architecture is founded on (i) an encoder derived from a specific transformer incorporating an augmented embedding layer for the encoder and a better-adjusted attention mechanism than that present in the state of the art.
A benchmark in performed on a corpus consisting of a set of interactions human-human and human-robot interactions where fMRI and conversational signals are recorded synchronously.
arXiv Detail & Related papers (2024-09-29T14:03:39Z) - Language Reconstruction with Brain Predictive Coding from fMRI Data [28.217967547268216]
Theory of predictive coding suggests that human brain naturally engages in continuously predicting future word representations.
textscPredFT achieves current state-of-the-art decoding performance with a maximum BLEU-1 score of $27.8%$.
arXiv Detail & Related papers (2024-05-19T16:06:02Z) - Language Generation from Brain Recordings [68.97414452707103]
We propose a generative language BCI that utilizes the capacity of a large language model and a semantic brain decoder.
The proposed model can generate coherent language sequences aligned with the semantic content of visual or auditory language stimuli.
Our findings demonstrate the potential and feasibility of employing BCIs in direct language generation.
arXiv Detail & Related papers (2023-11-16T13:37:21Z) - Surrogate Gradient Spiking Neural Networks as Encoders for Large
Vocabulary Continuous Speech Recognition [91.39701446828144]
We show that spiking neural networks can be trained like standard recurrent neural networks using the surrogate gradient method.
They have shown promising results on speech command recognition tasks.
In contrast to their recurrent non-spiking counterparts, they show robustness to exploding gradient problems without the need to use gates.
arXiv Detail & Related papers (2022-12-01T12:36:26Z) - Decoding speech perception from non-invasive brain recordings [48.46819575538446]
We introduce a model trained with contrastive-learning to decode self-supervised representations of perceived speech from non-invasive recordings.
Our model can identify, from 3 seconds of MEG signals, the corresponding speech segment with up to 41% accuracy out of more than 1,000 distinct possibilities.
arXiv Detail & Related papers (2022-08-25T10:01:43Z) - Toward a realistic model of speech processing in the brain with
self-supervised learning [67.7130239674153]
Self-supervised algorithms trained on the raw waveform constitute a promising candidate.
We show that Wav2Vec 2.0 learns brain-like representations with as little as 600 hours of unlabelled speech.
arXiv Detail & Related papers (2022-06-03T17:01:46Z) - Low-Dimensional Structure in the Space of Language Representations is
Reflected in Brain Responses [62.197912623223964]
We show a low-dimensional structure where language models and translation models smoothly interpolate between word embeddings, syntactic and semantic tasks, and future word embeddings.
We find that this representation embedding can predict how well each individual feature space maps to human brain responses to natural language stimuli recorded using fMRI.
This suggests that the embedding captures some part of the brain's natural language representation structure.
arXiv Detail & Related papers (2021-06-09T22:59:12Z) - Bi-Decoder Augmented Network for Neural Machine Translation [108.3931242633331]
We propose a novel Bi-Decoder Augmented Network (BiDAN) for the neural machine translation task.
Since each decoder transforms the representations of the input text into its corresponding language, jointly training with two target ends can make the shared encoder has the potential to produce a language-independent semantic space.
arXiv Detail & Related papers (2020-01-14T02:05:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.