論文の概要: Cheap Ways of Extracting Clinical Markers from Texts
- arxiv url: http://arxiv.org/abs/2403.11227v1
- Date: Sun, 17 Mar 2024 14:21:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 17:56:21.630613
- Title: Cheap Ways of Extracting Clinical Markers from Texts
- Title(参考訳): テキストから臨床マーカーを抽出する方法
- Authors: Anastasia Sandu, Teodor Mihailescu, Sergiu Nisioi,
- Abstract要約: 本稿では,CLPsychの2024 Shared TaskにおけるUniBuc考古学チームの作業について述べる。
これには、割り当てられた自殺リスクレベルを支持するテキスト内の証拠の発見が含まれていた。
証拠にはハイライトと要約の2種類が必要だった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper describes the work of the UniBuc Archaeology team for CLPsych's 2024 Shared Task, which involved finding evidence within the text supporting the assigned suicide risk level. Two types of evidence were required: highlights (extracting relevant spans within the text) and summaries (aggregating evidence into a synthesis). Our work focuses on evaluating Large Language Models (LLM) as opposed to an alternative method that is much more memory and resource efficient. The first approach employs a good old-fashioned machine learning (GOML) pipeline consisting of a tf-idf vectorizer with a logistic regression classifier, whose representative features are used to extract relevant highlights. The second, more resource intensive, uses an LLM for generating the summaries and is guided by chain-of-thought to provide sequences of text indicating clinical markers.
- Abstract(参考訳): 本稿では,CLPsychの2024年共有課題に関するUniBuc考古学チームの作業について述べる。
証拠には、ハイライト(テキスト内で関連するスパンを抽出する)と要約(合成に証拠を集約する)の2種類が必要だった。
我々の研究は、よりメモリとリソース効率のよい代替手法とは対照的に、LLM(Large Language Models)の評価に重点を置いている。
最初のアプローチでは、ロジスティック回帰分類器を備えたtf-idfベクタライザで構成される、優れた旧式の機械学習(GOML)パイプラインを使用して、関連するハイライトを抽出する。
第2のリソースは、より集中的に、要約を生成するのにLLMを使用し、臨床マーカーを示すテキストのシーケンスを提供するチェーン・オブ・シントによってガイドされる。
関連論文リスト
- Scaling Up Summarization: Leveraging Large Language Models for Long Text Extractive Summarization [0.27624021966289597]
本稿では,Large Language Models (LLM) を利用した抽出要約フレームワークであるEYEGLAXSを紹介する。
EYEGLAXSは、事実的および文法的整合性を保証するために抽出的な要約に焦点を当てている。
このシステムはPubMedやArXivといった有名なデータセットに新しいパフォーマンスベンチマークを設定する。
論文 参考訳(メタデータ) (2024-08-28T13:52:19Z) - Extracting and Encoding: Leveraging Large Language Models and Medical Knowledge to Enhance Radiological Text Representation [31.370503681645804]
自由テキストラジオグラフィーレポートから高品質な事実文を抽出するための新しい2段階フレームワークを提案する。
我々のフレームワークには胸部X線テキスト生成システムを評価するための新しい埋め込みベースのメトリクス(CXRFE)も含まれている。
論文 参考訳(メタデータ) (2024-07-02T04:39:19Z) - PromptReps: Prompting Large Language Models to Generate Dense and Sparse Representations for Zero-Shot Document Retrieval [76.50690734636477]
本稿では,PmptRepsを提案する。このPmptRepsは,トレーニングを必要とせず,コーパス全体から検索できる機能である。
検索システムは、高密度テキスト埋め込みとスパースバッグ・オブ・ワード表現の両方を利用する。
論文 参考訳(メタデータ) (2024-04-29T04:51:30Z) - ULTRA: Unleash LLMs' Potential for Event Argument Extraction through
Hierarchical Modeling and Pair-wise Refinement [6.39480325103865]
イベント引数抽出(EAE)は、あるイベントのロール固有のテキストスパン(例えば、引数)を特定するタスクである。
本稿では,イベントの議論をよりコスト効率よく抽出する階層的枠組みを提案する。
論文 参考訳(メタデータ) (2024-01-24T04:13:28Z) - Harnessing Explanations: LLM-to-LM Interpreter for Enhanced
Text-Attributed Graph Representation Learning [51.90524745663737]
重要なイノベーションは、機能として説明を使用することで、下流タスクにおけるGNNのパフォーマンス向上に利用できます。
提案手法は、確立されたTAGデータセットの最先端結果を実現する。
本手法はトレーニングを著しく高速化し,ogbn-arxivのベースラインに最も近い2.88倍の改善を実現した。
論文 参考訳(メタデータ) (2023-05-31T03:18:03Z) - Element-aware Summarization with Large Language Models: Expert-aligned
Evaluation and Chain-of-Thought Method [35.181659789684545]
自動要約は、ソースドキュメントのキーアイデアを含む簡潔な要約を生成する。
CNN/DailyMailやBBC XSumからの引用は、主に幻覚と情報冗長性の点で騒々しい。
本稿では,LCMを段階的に生成するためにSumCoT(Slide Chain-of-Thought)手法を提案する。
実験結果から, ROUGE-L では, 最先端の微調整 PLM とゼロショット LLM を+4.33/+4.77 で上回った。
論文 参考訳(メタデータ) (2023-05-22T18:54:35Z) - Lay Text Summarisation Using Natural Language Processing: A Narrative
Literature Review [1.8899300124593648]
本研究の目的は, テキスト要約の手法を記述し, 比較することである。
私たちは82の記事をスクリーニングし、同じデータセットを使用して2020年から2021年の間に8つの関連論文を公開しました。
ハイブリッドアプローチにおける抽出的および抽象的要約法の組み合わせが最も有効であることが判明した。
論文 参考訳(メタデータ) (2023-03-24T18:30:50Z) - ReSel: N-ary Relation Extraction from Scientific Text and Tables by
Learning to Retrieve and Select [53.071352033539526]
学術論文からN-ary関係を抽出する問題について考察する。
提案手法であるReSelは,このタスクを2段階のプロシージャに分解する。
3つの科学的情報抽出データセットに対する実験により、ReSelは最先端のベースラインを大きく上回っていることがわかった。
論文 参考訳(メタデータ) (2022-10-26T02:28:02Z) - TRIE++: Towards End-to-End Information Extraction from Visually Rich
Documents [51.744527199305445]
本稿では,視覚的にリッチな文書からエンド・ツー・エンドの情報抽出フレームワークを提案する。
テキスト読み出しと情報抽出は、よく設計されたマルチモーダルコンテキストブロックを介して互いに強化することができる。
フレームワークはエンドツーエンドのトレーニング可能な方法でトレーニングでき、グローバルな最適化が達成できる。
論文 参考訳(メタデータ) (2022-07-14T08:52:07Z) - UnifieR: A Unified Retriever for Large-Scale Retrieval [84.61239936314597]
大規模な検索は、クエリを与えられた巨大なコレクションから関連ドキュメントをリコールすることである。
事前学習型言語モデル(PLM)に基づく最近の検索手法は,高密度ベクターあるいはレキシコンに基づくパラダイムに大別することができる。
本論文では,高密度ベクトルとレキシコンに基づく検索を2つの表現能力を持つ1つのモデルで統合する学習フレームワークUnifieRを提案する。
論文 参考訳(メタデータ) (2022-05-23T11:01:59Z) - Commonsense Evidence Generation and Injection in Reading Comprehension [57.31927095547153]
本稿では,CEGI と命名された理解を読み取るためのコモンセンス・エビデンス・ジェネレーション・インジェクション・フレームワークを提案する。
この枠組みは、2種類の補助的コモンセンス証拠を包括的読解に注入し、機械に合理的思考能力を持たせる。
CosmosQAデータセットの実験では、提案されたCEGIモデルが現在の最先端アプローチよりも優れていることが示された。
論文 参考訳(メタデータ) (2020-05-11T16:31:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。