Graph Machine Learning based Doubly Robust Estimator for Network Causal Effects
- URL: http://arxiv.org/abs/2403.11332v2
- Date: Fri, 31 May 2024 21:38:53 GMT
- Title: Graph Machine Learning based Doubly Robust Estimator for Network Causal Effects
- Authors: Seyedeh Baharan Khatami, Harsh Parikh, Haowei Chen, Sudeepa Roy, Babak Salimi,
- Abstract summary: We propose a novel methodology that combines graph machine learning approaches with the double machine learning framework.
We demonstrate our method is accurate, robust, and scalable via an extensive simulation study.
- Score: 17.44202934049009
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We address the challenge of inferring causal effects in social network data. This results in challenges due to interference -- where a unit's outcome is affected by neighbors' treatments -- and network-induced confounding factors. While there is extensive literature focusing on estimating causal effects in social network setups, a majority of them make prior assumptions about the form of network-induced confounding mechanisms. Such strong assumptions are rarely likely to hold especially in high-dimensional networks. We propose a novel methodology that combines graph machine learning approaches with the double machine learning framework to enable accurate and efficient estimation of direct and peer effects using a single observational social network. We demonstrate the semiparametric efficiency of our proposed estimator under mild regularity conditions, allowing for consistent uncertainty quantification. We demonstrate that our method is accurate, robust, and scalable via an extensive simulation study. We use our method to investigate the impact of Self-Help Group participation on financial risk tolerance.
Related papers
- Network Causal Effect Estimation In Graphical Models Of Contagion And Latent Confounding [2.654975444537834]
Key question in many network studies is whether the observed correlations between units are primarily due to contagion or latent confounding.
We propose network causal effect estimation strategies that provide unbiased and consistent estimates.
We evaluate the effectiveness of our methods with synthetic data and the validity of our assumptions using real-world networks.
arXiv Detail & Related papers (2024-11-02T22:12:44Z) - Estimating Peer Direct and Indirect Effects in Observational Network Data [16.006409149421515]
We propose a general setting which considers both peer direct effects and peer indirect effects, and the effect of an individual's own treatment.
We use attention mechanisms to distinguish the influences of different neighbors and explore high-order neighbor effects through graph neural networks.
Our theoretical findings have the potential to improve intervention strategies in networked systems, with applications in areas such as social networks and epidemiology.
arXiv Detail & Related papers (2024-08-21T10:02:05Z) - Doubly Robust Causal Effect Estimation under Networked Interference via Targeted Learning [24.63284452991301]
We propose a doubly robust causal effect estimator under networked interference.
Specifically, we generalize the targeted learning technique into the networked interference setting.
We devise an end-to-end causal effect estimator by transforming the identified theoretical condition into a targeted loss.
arXiv Detail & Related papers (2024-05-06T10:49:51Z) - Integrating Active Learning in Causal Inference with Interference: A
Novel Approach in Online Experiments [5.488412825534217]
We introduce an active learning approach: Active Learning in Causal Inference with Interference (ACI)
ACI uses Gaussian process to flexibly model the direct and spillover treatment effects as a function of a continuous measure of neighbors' treatment assignment.
We demonstrate its feasibility in achieving accurate effects estimations with reduced data requirements.
arXiv Detail & Related papers (2024-02-20T04:13:59Z) - A Two-Part Machine Learning Approach to Characterizing Network Interference in A/B Testing [4.000213034401085]
We introduce "causal network motifs" and utilize transparent machine learning models to characterize network interference patterns.
Our approach provides a comprehensive and automated solution to address network interference for A/B testing practitioners.
arXiv Detail & Related papers (2023-08-18T19:37:55Z) - CausalBench: A Large-scale Benchmark for Network Inference from
Single-cell Perturbation Data [61.088705993848606]
We introduce CausalBench, a benchmark suite for evaluating causal inference methods on real-world interventional data.
CaulBench incorporates biologically-motivated performance metrics, including new distribution-based interventional metrics.
arXiv Detail & Related papers (2022-10-31T13:04:07Z) - Towards Unbiased Visual Emotion Recognition via Causal Intervention [63.74095927462]
We propose a novel Emotion Recognition Network (IERN) to alleviate the negative effects brought by the dataset bias.
A series of designed tests validate the effectiveness of IERN, and experiments on three emotion benchmarks demonstrate that IERN outperforms other state-of-the-art approaches.
arXiv Detail & Related papers (2021-07-26T10:40:59Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
A major challenge that limits the wide-spread adoption of deep learning has been their fragility to adversarial attacks.
This study presents the concept of residual error, a new performance measure for assessing the adversarial robustness of a deep neural network.
Experimental results using the case of image classification demonstrate the effectiveness and efficacy of the proposed residual error metric.
arXiv Detail & Related papers (2021-06-18T16:34:23Z) - Interpretable Social Anchors for Human Trajectory Forecasting in Crowds [84.20437268671733]
We propose a neural network-based system to predict human trajectory in crowds.
We learn interpretable rule-based intents, and then utilise the expressibility of neural networks to model scene-specific residual.
Our architecture is tested on the interaction-centric benchmark TrajNet++.
arXiv Detail & Related papers (2021-05-07T09:22:34Z) - Loss Bounds for Approximate Influence-Based Abstraction [81.13024471616417]
Influence-based abstraction aims to gain leverage by modeling local subproblems together with the 'influence' that the rest of the system exerts on them.
This paper investigates the performance of such approaches from a theoretical perspective.
We show that neural networks trained with cross entropy are well suited to learn approximate influence representations.
arXiv Detail & Related papers (2020-11-03T15:33:10Z) - Vulnerability Under Adversarial Machine Learning: Bias or Variance? [77.30759061082085]
We investigate the effect of adversarial machine learning on the bias and variance of a trained deep neural network.
Our analysis sheds light on why the deep neural networks have poor performance under adversarial perturbation.
We introduce a new adversarial machine learning algorithm with lower computational complexity than well-known adversarial machine learning strategies.
arXiv Detail & Related papers (2020-08-01T00:58:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.