論文の概要: An SDP-based Branch-and-Cut Algorithm for Biclustering
- arxiv url: http://arxiv.org/abs/2403.11351v2
- Date: Fri, 01 Nov 2024 20:08:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:41:54.290365
- Title: An SDP-based Branch-and-Cut Algorithm for Biclustering
- Title(参考訳): ビクラスタリングのためのSDPに基づくブランチ・アンド・カットアルゴリズム
- Authors: Antonio M. Sudoso,
- Abstract要約: 本稿では,二クラスタリング問題に対する分枝切断アルゴリズムを提案する。
提案アルゴリズムは汎用的な解法よりも20倍大きな解法を解くことができることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Biclustering, also called co-clustering, block clustering, or two-way clustering, involves the simultaneous clustering of both the rows and columns of a data matrix into distinct groups, such that the rows and columns within a group display similar patterns. As a model problem for biclustering, we consider the $k$-densest-disjoint biclique problem, whose goal is to identify $k$ disjoint complete bipartite subgraphs (called bicliques) of a given weighted complete bipartite graph such that the sum of their densities is maximized. To address this problem, we present a tailored branch-and-cut algorithm. For the upper bound routine, we consider a semidefinite programming relaxation and propose valid inequalities to strengthen the bound. We solve this relaxation in a cutting-plane fashion using a first-order method. For the lower bound, we design a maximum weight matching rounding procedure that exploits the solution of the relaxation solved at each node. Computational results on both synthetic and real-world instances show that the proposed algorithm can solve instances approximately 20 times larger than those handled by general-purpose solvers.
- Abstract(参考訳): コクラスタリング(co-clustering)、ブロッククラスタリング(rob clustering)、双方向クラスタリング( two-way clustering)とも呼ばれるビクラスタリングでは、データマトリックスの行と列を、グループ内の行と列が同様のパターンを表示するように、別々のグループに同時にクラスタリングする。
双クラスタリングのモデル問題として、与えられた重み付き完全双部グラフの$k$-densest-disjoint biclique問題について検討し、その目標は、その密度の和が最大になるように、与えられた重み付き完全双部グラフの$k$ disjoint complete bipartite subgraphs(bicliques)を特定することである。
この問題に対処するため,我々は枝切りアルゴリズムを提案する。
上界ルーチンに対しては、半定値プログラミング緩和を考慮し、有界性を強化するための有効な不等式を提案する。
我々はこの緩和を一階法を用いて切削平面方式で解く。
下界では各ノードで解いた緩和の解を生かした最大重み合わせラウンドリング法を設計する。
合成および実世界の両方のインスタンスにおける計算結果から,提案アルゴリズムは汎用的な解法よりも約20倍の精度で解けることが示された。
関連論文リスト
- Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
観測されたラベルを用いてクラスタを復元する効率的なアルゴリズムを考案する。
本稿では,期待値と高い確率でこれらの下位境界との性能を一致させる最初のアルゴリズムであるIACを提案する。
論文 参考訳(メタデータ) (2023-06-18T08:46:06Z) - A Computational Theory and Semi-Supervised Algorithm for Clustering [0.0]
半教師付きクラスタリングアルゴリズムを提案する。
クラスタリング法のカーネルは、Mohammadの異常検出アルゴリズムである。
結果は、合成および実世界のデータセットで示される。
論文 参考訳(メタデータ) (2023-06-12T09:15:58Z) - One-step Bipartite Graph Cut: A Normalized Formulation and Its
Application to Scalable Subspace Clustering [56.81492360414741]
両部グラフの1ステップ正規化カットを、特に線形時間複雑性で実施する方法を示す。
本稿では、まず、正規化制約付き一段階二分グラフカット基準を特徴付けるとともに、そのトレース問題に対する等価性を理論的に証明する。
このカット基準を、適応アンカー学習、二部グラフ学習、一段階正規化二部グラフ分割を同時にモデル化するスケーラブルなサブスペースクラスタリングアプローチに拡張する。
論文 参考訳(メタデータ) (2023-05-12T11:27:20Z) - Skew-Symmetric Adjacency Matrices for Clustering Directed Graphs [5.301300942803395]
カットベースの有向グラフ(グラフ)クラスタリングは、しばしばクラスタ内あるいはクラスタ間の疎結合を見つけることに焦点を当てる。
フローベースのクラスタリングでは、クラスタ間のエッジは一方向を向く傾向にあり、マイグレーションデータ、フードウェブ、トレーディングデータに見出されている。
論文 参考訳(メタデータ) (2022-03-02T20:07:04Z) - Optimal Clustering with Bandit Feedback [57.672609011609886]
本稿では,バンディットフィードバックを用いたオンラインクラスタリングの問題点について考察する。
これは、NPハード重み付きクラスタリング問題をサブルーチンとして解決する必要性を回避するための、シーケンシャルなテストのための新しい停止規則を含む。
合成および実世界のデータセットの広範なシミュレーションを通して、BOCの性能は下界と一致し、非適応的ベースラインアルゴリズムよりも大幅に優れることを示す。
論文 参考訳(メタデータ) (2022-02-09T06:05:05Z) - Lattice-Based Methods Surpass Sum-of-Squares in Clustering [98.46302040220395]
クラスタリングは教師なし学習における基本的なプリミティブである。
最近の研究は、低次手法のクラスに対する低い境界を確立している。
意外なことに、この特定のクラスタリングモデルのtextitdoesは、統計的-計算的ギャップを示さない。
論文 参考訳(メタデータ) (2021-12-07T18:50:17Z) - Clustering Ensemble Meets Low-rank Tensor Approximation [50.21581880045667]
本稿では,複数のクラスタリングを組み合わせ,個々のクラスタリングよりも優れたパフォーマンスを実現するクラスタリングアンサンブルの問題について検討する。
本稿では,この問題をグローバルな視点から解くために,新しい低ランクテンソル近似法を提案する。
7つのベンチマークデータセットを用いた実験の結果,提案手法は12の最先端手法と比較して,クラスタリング性能のブレークスルーを達成した。
論文 参考訳(メタデータ) (2020-12-16T13:01:37Z) - Biclustering with Alternating K-Means [5.089110111757978]
本稿では,経験的クラスタリングリスクを最小限に抑えるというアイデアに基づいて,ビクラスタリング問題の新たな定式化について述べる。
カラムと行間のk-meansクラスタリングアルゴリズムの適応バージョンを交互に使用することにより,局所最小値を求める,単純で斬新なアルゴリズムを提案する。
その結果,本アルゴリズムは,データ中の有意義な構造を検知し,様々な設定や状況において競合する2クラスタリング手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-09-09T20:15:24Z) - Bi-objective Optimization of Biclustering with Binary Data [0.0]
クラスタリングは、いくつかの類似性基準に従って、データオブジェクトをクラスタと呼ばれるサブセットに分割する。
本稿では,クラスタの重複を許容する準クラスタリングについて論じる。
ビクラスタリングは、オブジェクトとフィーチャーを同時にグループ化し、特定のオブジェクトのグループに特別な機能のグループがあるようにします。
論文 参考訳(メタデータ) (2020-02-09T21:49:26Z) - Conjoined Dirichlet Process [63.89763375457853]
我々はディリクレ過程に基づく新しい非パラメトリック確率的ビクラスタリング法を開発し、列と列の双方に強い共起を持つビクラスタを同定する。
本手法はテキストマイニングと遺伝子発現解析の2つの異なる応用に適用し,既存の手法に比べて多くの設定でビクラスタ抽出を改善することを示す。
論文 参考訳(メタデータ) (2020-02-08T19:41:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。