Scene-LLM: Extending Language Model for 3D Visual Understanding and Reasoning
- URL: http://arxiv.org/abs/2403.11401v2
- Date: Fri, 22 Mar 2024 18:52:51 GMT
- Title: Scene-LLM: Extending Language Model for 3D Visual Understanding and Reasoning
- Authors: Rao Fu, Jingyu Liu, Xilun Chen, Yixin Nie, Wenhan Xiong,
- Abstract summary: Scene-LLM is a 3D-visual-language model that enhances embodied agents' abilities in interactive 3D indoor environments.
Our experiments with Scene-LLM demonstrate its strong capabilities in dense captioning, question answering, and interactive planning.
- Score: 24.162598399141785
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces Scene-LLM, a 3D-visual-language model that enhances embodied agents' abilities in interactive 3D indoor environments by integrating the reasoning strengths of Large Language Models (LLMs). Scene-LLM adopts a hybrid 3D visual feature representation, that incorporates dense spatial information and supports scene state updates. The model employs a projection layer to efficiently project these features in the pre-trained textual embedding space, enabling effective interpretation of 3D visual information. Unique to our approach is the integration of both scene-level and ego-centric 3D information. This combination is pivotal for interactive planning, where scene-level data supports global planning and ego-centric data is important for localization. Notably, we use ego-centric 3D frame features for feature alignment, an efficient technique that enhances the model's ability to align features of small objects within the scene. Our experiments with Scene-LLM demonstrate its strong capabilities in dense captioning, question answering, and interactive planning. We believe Scene-LLM advances the field of 3D visual understanding and reasoning, offering new possibilities for sophisticated agent interactions in indoor settings.
Related papers
- g3D-LF: Generalizable 3D-Language Feature Fields for Embodied Tasks [62.74304008688472]
Generalizable 3D-Language Feature Fields (g3D-LF) is a 3D representation model pre-trained on large-scale 3D-language dataset for embodied tasks.
arXiv Detail & Related papers (2024-11-26T01:54:52Z) - PAVLM: Advancing Point Cloud based Affordance Understanding Via Vision-Language Model [4.079327215055764]
Affordance understanding, the task of identifying actionable regions on 3D objects, plays a vital role in allowing robotic systems to engage with and operate within the physical world.
Visual Language Models (VLMs) have excelled in high-level reasoning but fall short in grasping the nuanced physical properties required for effective human-robot interaction.
We introduce PAVLM, an innovative framework that utilizes the extensive multimodal knowledge embedded in pre-trained language models to enhance 3D affordance understanding of point cloud.
arXiv Detail & Related papers (2024-10-15T12:53:42Z) - Grounding 3D Scene Affordance From Egocentric Interactions [52.5827242925951]
Grounding 3D scene affordance aims to locate interactive regions in 3D environments.
We introduce a novel task: grounding 3D scene affordance from egocentric interactions.
arXiv Detail & Related papers (2024-09-29T10:46:19Z) - 3D Vision and Language Pretraining with Large-Scale Synthetic Data [28.45763758308814]
3D Vision-Language Pre-training aims to provide a pre-train model which can bridge 3D scenes with natural language.
We construct SynVL3D, a comprehensive synthetic scene-text corpus with 10K indoor scenes and 1M descriptions at object, view, and room levels.
We propose a synthetic-to-real domain adaptation in downstream task fine-tuning process to address the domain shift.
arXiv Detail & Related papers (2024-07-08T16:26:52Z) - When LLMs step into the 3D World: A Survey and Meta-Analysis of 3D Tasks via Multi-modal Large Language Models [113.18524940863841]
This survey provides a comprehensive overview of the methodologies enabling large language models to process, understand, and generate 3D data.
Our investigation spans various 3D data representations, from point clouds to Neural Radiance Fields (NeRFs)
It examines their integration with LLMs for tasks such as 3D scene understanding, captioning, question-answering, and dialogue.
arXiv Detail & Related papers (2024-05-16T16:59:58Z) - Chat-3D: Data-efficiently Tuning Large Language Model for Universal
Dialogue of 3D Scenes [56.727745047799246]
3D scene understanding has gained significant attention due to its wide range of applications.
This paper presents Chat-3D, which combines the 3D visual perceptual ability of pre-trained 3D representations and the impressive reasoning and conversation capabilities of advanced LLMs.
arXiv Detail & Related papers (2023-08-17T03:52:15Z) - WildRefer: 3D Object Localization in Large-scale Dynamic Scenes with Multi-modal Visual Data and Natural Language [31.691159120136064]
We introduce the task of 3D visual grounding in large-scale dynamic scenes based on natural linguistic descriptions and online captured multi-modal visual data.
We present a novel method, dubbed WildRefer, for this task by fully utilizing the rich appearance information in images, the position and geometric clues in point cloud.
Our datasets are significant for the research of 3D visual grounding in the wild and has huge potential to boost the development of autonomous driving and service robots.
arXiv Detail & Related papers (2023-04-12T06:48:26Z) - CLIP$^2$: Contrastive Language-Image-Point Pretraining from Real-World
Point Cloud Data [80.42480679542697]
We propose Contrastive Language-Image-Point Cloud Pretraining (CLIP$2$) to learn the transferable 3D point cloud representation in realistic scenarios.
Specifically, we exploit naturally-existed correspondences in 2D and 3D scenarios, and build well-aligned and instance-based text-image-point proxies from those complex scenarios.
arXiv Detail & Related papers (2023-03-22T09:32:45Z) - LanguageRefer: Spatial-Language Model for 3D Visual Grounding [72.7618059299306]
We develop a spatial-language model for a 3D visual grounding problem.
We show that our model performs competitively on visio-linguistic datasets proposed by ReferIt3D.
arXiv Detail & Related papers (2021-07-07T18:55:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.