3D Vision and Language Pretraining with Large-Scale Synthetic Data
- URL: http://arxiv.org/abs/2407.06084v1
- Date: Mon, 8 Jul 2024 16:26:52 GMT
- Title: 3D Vision and Language Pretraining with Large-Scale Synthetic Data
- Authors: Dejie Yang, Zhu Xu, Wentao Mo, Qingchao Chen, Siyuan Huang, Yang Liu,
- Abstract summary: 3D Vision-Language Pre-training aims to provide a pre-train model which can bridge 3D scenes with natural language.
We construct SynVL3D, a comprehensive synthetic scene-text corpus with 10K indoor scenes and 1M descriptions at object, view, and room levels.
We propose a synthetic-to-real domain adaptation in downstream task fine-tuning process to address the domain shift.
- Score: 28.45763758308814
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 3D Vision-Language Pre-training (3D-VLP) aims to provide a pre-train model which can bridge 3D scenes with natural language, which is an important technique for embodied intelligence. However, current 3D-VLP datasets are hindered by limited scene-level diversity and insufficient fine-grained annotations (only 1.2K scenes and 280K textual annotations in ScanScribe), primarily due to the labor-intensive of collecting and annotating 3D scenes. To overcome these obstacles, we construct SynVL3D, a comprehensive synthetic scene-text corpus with 10K indoor scenes and 1M descriptions at object, view, and room levels, which has the advantages of diverse scene data, rich textual descriptions, multi-grained 3D-text associations, and low collection cost. Utilizing the rich annotations in SynVL3D, we pre-train a simple and unified Transformer for aligning 3D and language with multi-grained pretraining tasks. Moreover, we propose a synthetic-to-real domain adaptation in downstream task fine-tuning process to address the domain shift. Through extensive experiments, we verify the effectiveness of our model design by achieving state-of-the-art performance on downstream tasks including visual grounding, dense captioning, and question answering.
Related papers
- Grounded 3D-LLM with Referent Tokens [58.890058568493096]
We propose Grounded 3D-LLM to consolidate various 3D vision tasks within a unified generative framework.
The model uses scene referent tokens as special noun phrases to reference 3D scenes.
Per-task instruction-following templates are employed to ensure natural and diversity in translating 3D vision tasks into language formats.
arXiv Detail & Related papers (2024-05-16T18:03:41Z) - Scene-LLM: Extending Language Model for 3D Visual Understanding and Reasoning [24.162598399141785]
Scene-LLM is a 3D-visual-language model that enhances embodied agents' abilities in interactive 3D indoor environments.
Our experiments with Scene-LLM demonstrate its strong capabilities in dense captioning, question answering, and interactive planning.
arXiv Detail & Related papers (2024-03-18T01:18:48Z) - SceneVerse: Scaling 3D Vision-Language Learning for Grounded Scene Understanding [37.47195477043883]
3D vision-language grounding, which focuses on aligning language with the 3D physical environment, stands as a cornerstone in the development of embodied agents.
We introduce the first million-scale 3D vision-language dataset, SceneVerse, encompassing about 68K 3D indoor scenes.
We demonstrate this scaling allows for a unified pre-training framework, Grounded Pre-training for Scenes (GPS) for 3D vision-language learning.
arXiv Detail & Related papers (2024-01-17T17:04:35Z) - 3DMIT: 3D Multi-modal Instruction Tuning for Scene Understanding [12.823274886850697]
We introduce a novel and efficient prompt tuning paradigm, 3DMIT.
This paradigm eliminates the alignment stage between 3D scenes and language and extends the instruction prompt with the 3D modality information.
We evaluate the effectiveness of our method across diverse tasks in the 3D scene domain.
arXiv Detail & Related papers (2024-01-06T12:20:18Z) - SceneWiz3D: Towards Text-guided 3D Scene Composition [134.71933134180782]
Existing approaches either leverage large text-to-image models to optimize a 3D representation or train 3D generators on object-centric datasets.
We introduce SceneWiz3D, a novel approach to synthesize high-fidelity 3D scenes from text.
arXiv Detail & Related papers (2023-12-13T18:59:30Z) - Chat-Scene: Bridging 3D Scene and Large Language Models with Object Identifiers [65.51132104404051]
We introduce the use of object identifiers and object-centric representations to interact with scenes at the object level.
Our model significantly outperforms existing methods on benchmarks including ScanRefer, Multi3DRefer, Scan2Cap, ScanQA, and SQA3D.
arXiv Detail & Related papers (2023-12-13T14:27:45Z) - 3D-VisTA: Pre-trained Transformer for 3D Vision and Text Alignment [44.00343134325925]
3D-VisTA is a pre-trained Transformer for 3D Vision and Text Alignment.
ScanScribe is the first large-scale 3D scene-text pairs dataset for 3D-VL pre-training.
arXiv Detail & Related papers (2023-08-08T15:59:17Z) - Lowis3D: Language-Driven Open-World Instance-Level 3D Scene
Understanding [57.47315482494805]
Open-world instance-level scene understanding aims to locate and recognize unseen object categories that are not present in the annotated dataset.
This task is challenging because the model needs to both localize novel 3D objects and infer their semantic categories.
We propose to harness pre-trained vision-language (VL) foundation models that encode extensive knowledge from image-text pairs to generate captions for 3D scenes.
arXiv Detail & Related papers (2023-08-01T07:50:14Z) - Multi-CLIP: Contrastive Vision-Language Pre-training for Question
Answering tasks in 3D Scenes [68.61199623705096]
Training models to apply common-sense linguistic knowledge and visual concepts from 2D images to 3D scene understanding is a promising direction that researchers have only recently started to explore.
We propose a novel 3D pre-training Vision-Language method, namely Multi-CLIP, that enables a model to learn language-grounded and transferable 3D scene point cloud representations.
arXiv Detail & Related papers (2023-06-04T11:08:53Z) - CLIP$^2$: Contrastive Language-Image-Point Pretraining from Real-World
Point Cloud Data [80.42480679542697]
We propose Contrastive Language-Image-Point Cloud Pretraining (CLIP$2$) to learn the transferable 3D point cloud representation in realistic scenarios.
Specifically, we exploit naturally-existed correspondences in 2D and 3D scenarios, and build well-aligned and instance-based text-image-point proxies from those complex scenarios.
arXiv Detail & Related papers (2023-03-22T09:32:45Z) - Static and Animated 3D Scene Generation from Free-form Text Descriptions [1.102914654802229]
We study a new pipeline that aims to generate static as well as animated 3D scenes from different types of free-form textual scene description.
In the first stage, we encode the free-form text using an encoder-decoder neural architecture.
In the second stage, we generate a 3D scene based on the generated encoding.
arXiv Detail & Related papers (2020-10-04T11:31:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.