論文の概要: Neural network representation of quantum systems
- arxiv url: http://arxiv.org/abs/2403.11420v1
- Date: Mon, 18 Mar 2024 02:20:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 16:57:28.329896
- Title: Neural network representation of quantum systems
- Title(参考訳): 量子系のニューラルネットワーク表現
- Authors: Koji Hashimoto, Yuji Hirono, Jun Maeda, Jojiro Totsuka-Yoshinaka,
- Abstract要約: 我々は、幅広い種類の量子力学系をニューラルネットワークの形でキャストできる新しいマップを提供する。
我々の発見は、機械学習を量子の世界に近づける。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It has been proposed that random wide neural networks near Gaussian process are quantum field theories around Gaussian fixed points. In this paper, we provide a novel map with which a wide class of quantum mechanical systems can be cast into the form of a neural network with a statistical summation over network parameters. Our simple idea is to use the universal approximation theorem of neural networks to generate arbitrary paths in the Feynman's path integral. The map can be applied to interacting quantum systems / field theories, even away from the Gaussian limit. Our findings bring machine learning closer to the quantum world.
- Abstract(参考訳): ガウス過程近くのランダム・ワイド・ニューラルネットワークはガウスの固定点周辺の量子場理論であると提案されている。
本稿では,幅広い量子力学系を,ネットワークパラメータに対する統計的総和を持つニューラルネットワークの形式にキャスト可能な,新しいマップを提案する。
我々の単純な考え方は、ニューラルネットワークの普遍近似定理を用いて、ファインマンの経路積分における任意の経路を生成することである。
この写像は、ガウス極限から離れても相互作用する量子システムや場の理論に適用できる。
我々の発見は、機械学習を量子の世界に近づける。
関連論文リスト
- Unsupervised Random Quantum Networks for PDEs [0.0]
PINNは、微分演算子と関連する境界条件を満たすように訓練されたディープニューラルネットワークの助けを借りて、PDEの解を近似する。
我々はこのアイデアを量子コンピューティング領域で再考し、パラメータ化されたランダム量子回路を試行的な解として用いた。
ランダムな量子ネットワークは、従来の量子ネットワークやランダムな古典的ネットワークよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-12-21T10:25:52Z) - Randomness-enhanced expressivity of quantum neural networks [7.7991930692137466]
本稿では,量子回路にランダム性を組み込むことにより,QNNの表現性を高める新しい手法を提案する。
我々は、Uhlmannの定理を用いて、任意の対象作用素を正確に近似することができることを証明した。
量子機械学習に広く応用できる複数の学習タスクに対してランダム性を導入することにより,QNNの表現性が向上することを発見した。
論文 参考訳(メタデータ) (2023-08-09T07:17:13Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Are classical neural networks quantum? [0.0]
ニューラルネットワークは、波動関数の近似として、多くの粒子系の状態空間の探索を改善するために使用されている。
ここでは、システムを量子化する理由と、ニューラルネットワークが量子残基を持つと解釈できる範囲について論じます。
論文 参考訳(メタデータ) (2022-05-31T09:33:51Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
勾配勾配勾配による古典的トレーサビリティに寄与する条件は、量子線形系を効率的に解くために必要な条件と一致することを示す。
MNIST画像データセットがそのような条件を満たすことを数値的に示す。
我々は、プールを用いた畳み込みニューラルネットワークのトレーニングに$O(log n)$の実証的証拠を提供する。
論文 参考訳(メタデータ) (2021-07-19T23:41:03Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
量子生成逆数ネットワーク(量子GAN, EQ-GAN)のための新しいタイプのアーキテクチャを提案する。
EQ-GANはコヒーレントなエラーに対してさらなる堅牢性を示し、Google Sycamore超伝導量子プロセッサで実験的にEQ-GANの有効性を示す。
論文 参考訳(メタデータ) (2021-04-30T20:38:41Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z) - Generalization Study of Quantum Neural Network [11.502747203515954]
一般化はニューラルネットワークの重要な特徴であり、それについて多くの研究がなされている。
量子ゲートによって構築された量子ニューラルネットワークのクラスについて検討した。
我々のモデルは、同じ構造を持つ古典的ニューラルネットワークよりも優れた一般化を持つ。
論文 参考訳(メタデータ) (2020-06-02T06:10:19Z) - Machine learning transfer efficiencies for noisy quantum walks [62.997667081978825]
グラフ型と量子系コヒーレンスの両方の要件を見つけるプロセスは自動化可能であることを示す。
この自動化は、特定のタイプの畳み込みニューラルネットワークを使用して、どのネットワークで、どのコヒーレンス要求の量子優位性が可能かを学習する。
我々の結果は、量子実験における利点の実証と、科学的研究と発見の自動化への道を開くために重要である。
論文 参考訳(メタデータ) (2020-01-15T18:36:53Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
本稿では、学習ツールと量子絡み合いの理論を組み合わせて、純状態における多部量子ビット系の絡み合い分類を行う。
我々は、ニューラルネットワーク量子状態(NNS)として知られる制限されたボルツマンマシン(RBM)アーキテクチャにおいて、人工ニューラルネットワークを用いた量子システムのパラメータ化を用いる。
論文 参考訳(メタデータ) (2019-12-31T07:40:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。