論文の概要: Semantic-Enhanced Representation Learning for Road Networks with Temporal Dynamics
- arxiv url: http://arxiv.org/abs/2403.11495v1
- Date: Mon, 18 Mar 2024 05:59:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 16:26:41.724711
- Title: Semantic-Enhanced Representation Learning for Road Networks with Temporal Dynamics
- Title(参考訳): 時間的ダイナミクスを考慮した道路網のセマンティック・エンハンスメント表現学習
- Authors: Yile Chen, Xiucheng Li, Gao Cong, Zhifeng Bao, Cheng Long,
- Abstract要約: 道路網の汎用表現を学習するためのToastという新しいフレームワークと、その先進的なDyToastを紹介する。
具体的には,交通パターンと走行意味論という,道路ネットワークに固有の2つの重要な意味的特徴を符号化することを提案する。
提案するフレームワークは,最先端のベースラインを大きなマージンで一貫して上回っている。
- 参考スコア(独自算出の注目度): 33.940044533340235
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this study, we introduce a novel framework called Toast for learning general-purpose representations of road networks, along with its advanced counterpart DyToast, designed to enhance the integration of temporal dynamics to boost the performance of various time-sensitive downstream tasks. Specifically, we propose to encode two pivotal semantic characteristics intrinsic to road networks: traffic patterns and traveling semantics. To achieve this, we refine the skip-gram module by incorporating auxiliary objectives aimed at predicting the traffic context associated with a target road segment. Moreover, we leverage trajectory data and design pre-training strategies based on Transformer to distill traveling semantics on road networks. DyToast further augments this framework by employing unified trigonometric functions characterized by their beneficial properties, enabling the capture of temporal evolution and dynamic nature of road networks more effectively. With these proposed techniques, we can obtain representations that encode multi-faceted aspects of knowledge within road networks, applicable across both road segment-based applications and trajectory-based applications. Extensive experiments on two real-world datasets across three tasks demonstrate that our proposed framework consistently outperforms the state-of-the-art baselines by a significant margin.
- Abstract(参考訳): 本研究では,道路ネットワークの汎用表現を学習するためのToastという新しいフレームワークを紹介し,その先進的フレームワークであるDyToastと合わせて,時間的ダイナミクスの統合を強化し,様々な時間感応的な下流タスクの性能向上を図る。
具体的には,交通パターンと走行意味論という,道路ネットワークに固有の2つの重要な意味的特徴を符号化することを提案する。
そこで我々は,目標道路セグメントに関連する交通状況の予測を目的とした補助的目的を組み込むことにより,スキップグラムモジュールを改良する。
さらに,道路網上を走行する意味を抽出するために,トランスフォーマーに基づく軌道データを活用し,事前学習戦略を設計する。
DyToastはこのフレームワークをさらに強化し、より効果的に道路網の時間的進化と動的性質を捉えることができる。
提案手法により,道路セグメントベースアプリケーションとトラジェクトリベースアプリケーションの両方に適用可能な,道路ネットワーク内の知識の多面的側面を符号化した表現が得られる。
3つのタスクにわたる2つの実世界のデータセットに関する大規模な実験は、提案したフレームワークが、最先端のベースラインを著しく上回っていることを示している。
関連論文リスト
- Trajectory Representation Learning on Road Networks and Grids with Spatio-Temporal Dynamics [0.8655526882770742]
軌道表現学習は、スマートシティや都市計画など分野の応用における基本的な課題である。
本稿では,時間的ダイナミクスを取り入れつつ,グリッドと道路ネットワークのモダリティを統合する新しいモデルであるTIGRを提案する。
実世界の2つのデータセット上でTIGRを評価し,両モードの組み合わせの有効性を実証した。
論文 参考訳(メタデータ) (2024-11-21T10:56:02Z) - Cross-Domain Transfer Learning using Attention Latent Features for Multi-Agent Trajectory Prediction [4.292918274985369]
本稿では,トランスフォーマーモデルにおけるアテンション表現に対して,クロスドメイン適応を行う新しい時空間軌道予測フレームワークを提案する。
グラフ畳み込みネットワークは、マルチエージェント車両間の複雑な時空間相互作用を正確にモデル化する動的グラフ特徴埋め込みを構築するためにも統合される。
論文 参考訳(メタデータ) (2024-11-09T06:39:44Z) - Image Captioning via Dynamic Path Customization [100.15412641586525]
画像キャプションのための新しい動的トランスフォーマーネットワーク(DTNet)を提案する。
提案するDTNetの有効性を検証するため,MS-COCOデータセットの広範な実験を行い,新しい最先端性能を実現する。
論文 参考訳(メタデータ) (2024-06-01T07:23:21Z) - Fine-Grained Extraction of Road Networks via Joint Learning of
Connectivity and Segmentation [5.496893845821393]
衛星画像からの道路網抽出は、インテリジェントな交通管理と自動運転分野に広く応用されている。
高解像度のリモートセンシング画像は複雑な道路エリアと背景を逸脱させており,道路抽出の課題となっている。
接続の正しさを保ちながら、エンドツーエンドのセグメンテーション道路のためのスタック型マルチタスクネットワークを提案する。
論文 参考訳(メタデータ) (2023-12-07T22:57:17Z) - A Deeply Supervised Semantic Segmentation Method Based on GAN [9.441379867578332]
提案モデルは,GAN(Generative Adversarial Network)フレームワークを従来のセマンティックセグメンテーションモデルに統合する。
本手法の有効性は,道路ひび割れデータセットの性能向上によって実証された。
論文 参考訳(メタデータ) (2023-10-06T08:22:24Z) - Dynamic Spatial Sparsification for Efficient Vision Transformers and
Convolutional Neural Networks [88.77951448313486]
視覚データにおける空間空間空間性を利用したモデルアクセラレーションのための新しい手法を提案する。
本稿では,冗長トークンを具現化する動的トークンスペーシフィケーションフレームワークを提案する。
提案手法は,CNNや階層型視覚変換器などの階層モデルに拡張する。
論文 参考訳(メタデータ) (2022-07-04T17:00:51Z) - Learning to integrate vision data into road network data [14.86655504533083]
道路ネットワークは、コネクテッドおよび自律走行車の中核となるインフラである。
本稿では、グラフニューラルネットワークによる埋め込みを改善するために、リモートセンシングビジョンデータをネットワークデータに統合することを提案する。
中国・成都市におけるOSM+Di Chuxingデータセットの最先端性能を実現した。
論文 参考訳(メタデータ) (2021-12-20T15:38:49Z) - Aerial Images Meet Crowdsourced Trajectories: A New Approach to Robust
Road Extraction [110.61383502442598]
我々は、Cross-Modal Message Propagation Network (CMMPNet)と呼ばれる新しいニューラルネットワークフレームワークを紹介する。
CMMPNetは、モダリティ固有の表現学習のための2つのディープオートエンコーダと、クロスモーダル表現洗練のためのテーラー設計のデュアルエンハンスメントモジュールで構成されている。
実世界の3つのベンチマーク実験により, CMMPNetによる堅牢な道路抽出の有効性が示された。
論文 参考訳(メタデータ) (2021-11-30T04:30:10Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
粗いトラフィックからのきめ細かなトラフィックフローの正確な推測は、新たな重要な問題である。
本稿では,道路ネットワークの知識を活かした新しい道路対応交通流磁化器(RATFM)を提案する。
提案手法は,高品質なトラフィックフローマップを作成できる。
論文 参考訳(メタデータ) (2021-09-29T07:51:49Z) - Spatio-temporal Modeling for Large-scale Vehicular Networks Using Graph
Convolutional Networks [110.80088437391379]
SMARTと呼ばれるグラフベースのフレームワークが提案され、大規模な地理的領域にわたるV2I通信遅延の統計をモデル化し、追跡する。
深層Q-networksアルゴリズムと統合したグラフ畳み込みネットワークを用いたグラフ再構築型手法を開発する。
その結果,提案手法は,モデル化の精度と効率と,大規模車両ネットワークにおける遅延性能を有意に向上させることが示された。
論文 参考訳(メタデータ) (2021-03-13T06:56:29Z) - VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized
Representation [74.56282712099274]
本稿では,ベクトルで表される個々の道路成分の空間的局所性を利用する階層型グラフニューラルネットワークであるVectorNetを紹介する。
ベクトル化高定義(HD)マップとエージェントトラジェクトリの操作により、ロッキーなレンダリングや計算集約的なConvNetエンコーディングのステップを避けることができる。
我々は、社内行動予測ベンチマークと最近リリースされたArgoverse予測データセットでVectorNetを評価した。
論文 参考訳(メタデータ) (2020-05-08T19:07:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。