論文の概要: DEE: Dual-stage Explainable Evaluation Method for Text Generation
- arxiv url: http://arxiv.org/abs/2403.11509v1
- Date: Mon, 18 Mar 2024 06:30:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 16:26:41.701015
- Title: DEE: Dual-stage Explainable Evaluation Method for Text Generation
- Title(参考訳): DEE:テキスト生成のための2段階説明可能な評価方法
- Authors: Shenyu Zhang, Yu Li, Rui Wu, Xiutian Huang, Yongrui Chen, Wenhao Xu, Guilin Qi,
- Abstract要約: テキスト生成の品質を推定するための2段階説明可能な評価手法であるDEEを紹介する。
Llama 2 上に構築された DEE は、生成したテキスト中のエラーの効率的な識別を行うためのステージ固有の命令によって導かれる2段階の原理に従う。
このデータセットは、幻覚や毒性などの新たな問題に対処し、DEEの評価基準の範囲を広げる。
- 参考スコア(独自算出の注目度): 21.37963672432829
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automatic methods for evaluating machine-generated texts hold significant importance due to the expanding applications of generative systems. Conventional methods tend to grapple with a lack of explainability, issuing a solitary numerical score to signify the assessment outcome. Recent advancements have sought to mitigate this limitation by incorporating large language models (LLMs) to offer more detailed error analyses, yet their applicability remains constrained, particularly in industrial contexts where comprehensive error coverage and swift detection are paramount. To alleviate these challenges, we introduce DEE, a Dual-stage Explainable Evaluation method for estimating the quality of text generation. Built upon Llama 2, DEE follows a dual-stage principle guided by stage-specific instructions to perform efficient identification of errors in generated texts in the initial stage and subsequently delves into providing comprehensive diagnostic reports in the second stage. DEE is fine-tuned on our elaborately assembled dataset AntEval, which encompasses 15K examples from 4 real-world applications of Alipay that employ generative systems. The dataset concerns newly emerged issues like hallucination and toxicity, thereby broadening the scope of DEE's evaluation criteria. Experimental results affirm that DEE's superiority over existing evaluation methods, achieving significant improvements in both human correlation as well as efficiency.
- Abstract(参考訳): 機械生成テキストの自動評価法は, 生成システムの普及により重要な意味を持つ。
従来の手法では説明可能性の欠如に悩まされ、評価結果を示すために単独の数値スコアが発行される傾向にある。
近年,大規模な言語モデル (LLM) を組み込んで,より詳細なエラー解析を行うことにより,この制限を緩和しようとしているが,特に包括的エラーカバレッジと迅速な検出が最重要となる産業環境では,適用性は制限されている。
これらの課題を解決するために、テキスト生成の品質を推定するためのDEC(Dual-stage Explainable Evaluation)手法を提案する。
Llama 2 上に構築された DEE は、ステージ固有の命令によって導かれる2段階の原則に従って、生成したテキストのエラーの効率的な識別を行い、その後第2段階の包括的な診断レポートを提供する。
DEEは、我々の精巧に組み立てられたデータセットAntEvalに微調整されている。
このデータセットは、幻覚や毒性などの新たな問題に対処し、DEEの評価基準の範囲を広げる。
実験結果から,DeEが既存の評価手法よりも優れていることが確認され,人間相関と効率の両面で有意な改善が得られた。
関連論文リスト
- Beyond Coarse-Grained Matching in Video-Text Retrieval [50.799697216533914]
きめ細かい評価のための新しいアプローチを導入する。
テストキャプションを自動的に生成することで,既存のデータセットにアプローチを適用することができる。
きめ細かい評価実験は、このアプローチがきめ細かな違いを理解するモデルの能力を高めることを実証している。
論文 参考訳(メタデータ) (2024-10-16T09:42:29Z) - THaMES: An End-to-End Tool for Hallucination Mitigation and Evaluation in Large Language Models [0.0]
事実的に誤ったコンテンツの生成である幻覚は、大規模言語モデルにおいてますます困難になっている。
本稿では,このギャップに対処する統合フレームワークとライブラリであるTHaMESを紹介する。
THaMES は LLM における幻覚の評価と緩和のためのエンドツーエンドのソリューションを提供する。
論文 参考訳(メタデータ) (2024-09-17T16:55:25Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [69.4501863547618]
本稿では,様々なシナリオにまたがってRAGシステムを評価するためのフレームワークであるRAGvalを紹介する。
事実の正確性に着目し, 完全性, 幻覚, 不適切性の3つの新しい指標を提案する。
実験結果から, RAGEvalは, 生成した試料の明瞭度, 安全性, 適合性, 豊かさにおいて, ゼロショット法とワンショット法より優れていた。
論文 参考訳(メタデータ) (2024-08-02T13:35:11Z) - D2SP: Dynamic Dual-Stage Purification Framework for Dual Noise Mitigation in Vision-based Affective Recognition [32.74206402632733]
ノイズは、論理的なラベル付けを損なう低品質なキャプチャや、アノテーションのバイアスによる誤ラベルに悩まされるインスタンスから生じます。
textbfSeeking textbfCertain data textbfIn extensive textbfUncertain data (SCIU)
このイニシアチブは、これらの不確実性のDFERデータセットを浄化することを目的としており、トレーニングプロセスでクリーンで検証されたデータのみが使用されることを保証する。
論文 参考訳(メタデータ) (2024-06-24T09:25:02Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
大規模言語モデル(LLM)は、問題解決と意思決定の能力の向上を示している。
本稿ではメタ推論技術を必要とするプロセスベースのベンチマークMR-Benを提案する。
メタ推論のパラダイムは,システム2のスロー思考に特に適しています。
論文 参考訳(メタデータ) (2024-06-20T03:50:23Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
本稿では,新しい評価手法SQC-Scoreを提案する。
主観的質問訂正の原則に着想を得て,新しい評価手法SQC-Scoreを提案する。
3つの情報抽出タスクの結果から,SQC-Scoreは基準値よりもアノテータの方が好ましいことが示された。
論文 参考訳(メタデータ) (2024-04-04T15:36:53Z) - KIEval: A Knowledge-grounded Interactive Evaluation Framework for Large Language Models [53.84677081899392]
KIEvalは、大規模言語モデルのための知識ベースでインタラクティブな評価フレームワークである。
動的汚染耐性評価を達成するために、LSMを動力とする"インターアクター"の役割を初めて取り入れている。
5つのデータセットにわたる7つのLLMの大規模な実験により、KIEvalの有効性と一般化が検証された。
論文 参考訳(メタデータ) (2024-02-23T01:30:39Z) - Toward Practical Automatic Speech Recognition and Post-Processing: a
Call for Explainable Error Benchmark Guideline [12.197453599489963]
本稿では,Error Explainable Benchmark (EEB) データセットの開発を提案する。
このデータセットは、音声レベルとテキストレベルの両方を考慮しているが、モデルの欠点を詳細に理解することができる。
我々の提案は、より現実世界中心の評価のための構造化された経路を提供し、ニュアンスドシステムの弱点の検出と修正を可能にします。
論文 参考訳(メタデータ) (2024-01-26T03:42:45Z) - DCR-Consistency: Divide-Conquer-Reasoning for Consistency Evaluation and
Improvement of Large Language Models [4.953092503184905]
この研究は、LLM(Large Language Models)生成したテキストの一貫性を評価し改善する自動化フレームワークであるDCRを提案する。
本稿では,DCEからの出力を解釈可能な数値スコアに変換する自動計量変換器(AMC)を提案する。
また,本手法は出力不整合の90%近くを著しく低減し,効果的な幻覚緩和の可能性を示唆している。
論文 参考訳(メタデータ) (2024-01-04T08:34:16Z) - Robust Saliency-Aware Distillation for Few-shot Fine-grained Visual
Recognition [57.08108545219043]
サンプルが少ない新しいサブカテゴリを認識することは、コンピュータビジョンにおいて不可欠で挑戦的な研究課題である。
既存の文献は、ローカルベースの表現アプローチを採用することでこの問題に対処している。
本稿では,ロバスト・サリエンシ・アウェア蒸留法(RSaD)を提案する。
論文 参考訳(メタデータ) (2023-05-12T00:13:17Z) - Contrastive Error Attribution for Finetuned Language Models [35.80256755393739]
ノイズと誤記のデータは、自然言語生成(NLG)タスクにおける幻覚と不誠実なアウトプットの中核的な原因である。
望ましくないアウトプットにつながる低品質のトレーニングインスタンスを特定し、削除するフレームワークを導入します。
本研究では、勾配に基づく影響尺度のような既存の誤差追跡手法は、忠実度誤差を検出するために確実に機能しないことを示す。
論文 参考訳(メタデータ) (2022-12-21T02:28:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。