Adiabatic Bottlenecks in Quantum Annealing and Nonequilibrium Dynamics of Paramagnons
- URL: http://arxiv.org/abs/2403.11548v2
- Date: Fri, 2 Aug 2024 08:09:56 GMT
- Title: Adiabatic Bottlenecks in Quantum Annealing and Nonequilibrium Dynamics of Paramagnons
- Authors: Tim Bode, Frank K. Wilhelm,
- Abstract summary: Correspondence between long-range interacting quantum spin glasses and optimization problems underpins the physical motivation for adiabatic quantum computing.
In disordered (quantum) spin systems, the focus is on exact methods such as the replica trick that allow the calculation of system quantities in the limit of infinite system and ensemble size.
Here, we apply the nonequilibrium Green-function formalism to the spin coherent-state path integral to obtain the statistical fluctuations and the collective-excitation spectrum.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The correspondence between long-range interacting quantum spin glasses and combinatorial optimization problems underpins the physical motivation for adiabatic quantum computing. On one hand, in disordered (quantum) spin systems, the focus is on exact methods such as the replica trick that allow the calculation of system quantities in the limit of infinite system and ensemble size. On the other hand, when solving a given instance of an optimization problem, disorder-averaged quantities are of no relevance, as one is solely interested in instance-specific, finite-size properties, in particular the true solution. Here, we apply the nonequilibrium Green-function formalism to the spin coherent-state path integral to obtain the statistical fluctuations and the collective-excitation spectrum along the annealing path. For the example of the quantum Sherrington-Kirkpatrick spin glass, by comparing to extensive numerically exact results, we show that this method provides access to the instance-specific bottlenecks of the annealing protocol.
Related papers
- Quantum benefit of the quantum equation of motion for the strongly
coupled many-body problem [0.0]
The quantum equation of motion (qEOM) is a hybrid quantum-classical algorithm for computing excitation properties of a fermionic many-body system.
We demonstrate explicitly that the qEOM exhibits a quantum benefit due to the independence of the number of required quantum measurements.
arXiv Detail & Related papers (2023-09-18T22:10:26Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Exact solutions for a spin-orbit coupled bosonic double-well system [5.412119592723349]
We generate analytic exact solutions for an SO-coupled boson held in a driven double well.
Results have potential applications in the preparation of accurate quantum entangled states and quantum information processing.
arXiv Detail & Related papers (2022-10-25T02:43:25Z) - Coalescence of non-Markovian dissipation, quantum Zeno effect and
non-Hermitian physics, in a simple realistic quantum system [0.0]
We develop a theoretical framework in terms of the time-dependent Schrodinger equation of motion.
The link between the peaked structure of the effective decay rate of the qubit that interacts indirectly with the environment, and the onset of the quantum Zeno effect is discussed in great detail.
Our treatment and results have revealed an intricate interplay between non-Markovian dynamics, quantum Zeno effect and non-Hermitian physics.
arXiv Detail & Related papers (2022-06-28T09:28:02Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Strongly interacting trapped one-dimensional quantum gases: an exact
solution [0.0]
Review collects the predictions coming from a family of exact solutions.
The exact solution applies to bosons, fermions and mixtures.
It also predicts the exact quantum dynamics at all the times.
arXiv Detail & Related papers (2022-01-07T08:06:43Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution.
As with present-day calculations, quantum computation strategies still require the restriction to a finite system size.
We quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty.
arXiv Detail & Related papers (2020-07-01T17:43:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.