論文の概要: Construction of Hyper-Relational Knowledge Graphs Using Pre-Trained Large Language Models
- arxiv url: http://arxiv.org/abs/2403.11786v1
- Date: Mon, 18 Mar 2024 13:44:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 20:19:57.348515
- Title: Construction of Hyper-Relational Knowledge Graphs Using Pre-Trained Large Language Models
- Title(参考訳): 事前学習大言語モデルを用いたハイパーリレーショナル知識グラフの構築
- Authors: Preetha Datta, Fedor Vitiugin, Anastasiia Chizhikova, Nitin Sawhney,
- Abstract要約: テキストからハイパーリレーショナルな知識を抽出するゼロショットプロンプトベースの手法を提案する。
モデルとベースラインを比較して,0.77のリコールで有望な結果を得た。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Extracting hyper-relations is crucial for constructing comprehensive knowledge graphs, but there are limited supervised methods available for this task. To address this gap, we introduce a zero-shot prompt-based method using OpenAI's GPT-3.5 model for extracting hyper-relational knowledge from text. Comparing our model with a baseline, we achieved promising results, with a recall of 0.77. Although our precision is currently lower, a detailed analysis of the model outputs has uncovered potential pathways for future research in this area.
- Abstract(参考訳): 包括的知識グラフの構築にはハイパーリレーションの抽出が不可欠だが,このタスクには限定的な教師付き手法が存在する。
このギャップに対処するために,OpenAIのGPT-3.5モデルを用いたゼロショットプロンプトベースの手法を導入し,テキストからハイパーリレーショナルな知識を抽出する。
モデルとベースラインを比較して,0.77のリコールで有望な結果を得た。
現在、精度は低いが、モデル出力の詳細な分析により、この分野における今後の研究の道筋が明らかになっている。
関連論文リスト
- Relational Learning in Pre-Trained Models: A Theory from Hypergraph Recovery Perspective [60.64922606733441]
我々は,関係学習をハイパーグラフリカバリとして形式化する数学的モデルを導入し,基礎モデル(FM)の事前学習について検討する。
我々のフレームワークでは、世界はハイパーグラフとして表現され、データはハイパーエッジからランダムなサンプルとして抽象化される。我々は、このハイパーグラフを復元するための事前学習モデル(PTM)の有効性を理論的に検証し、ミニマックスに近い最適スタイルでデータ効率を解析する。
論文 参考訳(メタデータ) (2024-06-17T06:20:39Z) - Graphical Reasoning: LLM-based Semi-Open Relation Extraction [3.2586315449885106]
GPT-3.5でテキスト内学習を活用すれば,抽出プロセスが大幅に向上することを示す。
本稿では,関係抽出を逐次的なサブタスクに分解する新しい図式推論手法を提案する。
論文 参考訳(メタデータ) (2024-04-30T21:41:53Z) - A Three-Phases SFT Hybrid Model Integrated Strong Prior Module and Data Overlap Estimation in the Eduation Context [0.0]
教師付き微調整モデルとして,エンド・ツー・エンドの3相モデルを提案する。
本モデルは,学習知識の構造的分解と漸進的指導によるアウトプットを実現する。
当社のモデルは,オープンソースモデルと比較して,コード能力の最先端性も達成している。
論文 参考訳(メタデータ) (2024-03-13T05:38:39Z) - Exploring Prompt-Based Methods for Zero-Shot Hypernym Prediction with
Large Language Models [0.0]
本稿では,大言語モデル(LLM)を用いたハイパーネミー予測に対するゼロショットアプローチについて検討する。
実験は、言語モデルプロンプトの有効性と古典パターンとの強い相関を示す。
また,コハイポニム予測のプロンプトや,追加情報によるプロンプトの増強によるハイポニミー予測の改善についても検討する。
論文 参考訳(メタデータ) (2024-01-09T12:13:55Z) - Enhancing Knowledge Graph Construction Using Large Language Models [0.0]
本稿では,ChatGPTのような基礎LPMの現在の進歩を,REBELのような特定の事前学習モデルと比較し,結合実体と関係抽出について述べる。
生テキストから知識グラフを自動生成するためのパイプラインを作成し,高度なLCMモデルを用いることで,非構造化テキストからこれらのグラフを作成するプロセスの精度が向上することを示した。
論文 参考訳(メタデータ) (2023-05-08T12:53:06Z) - How to Unleash the Power of Large Language Models for Few-shot Relation
Extraction? [28.413620806193165]
本稿では,GPT-3.5による数ショット関係抽出のための主要な手法,文脈内学習とデータ生成について検討する。
テキスト内学習は,従来の素早い学習手法と同等のパフォーマンスを達成でき,大規模言語モデルによるデータ生成は,従来のソリューションを推し進めて,最先端の複数ショットの新たな結果が得られることを観察する。
論文 参考訳(メタデータ) (2023-05-02T15:55:41Z) - Schema-aware Reference as Prompt Improves Data-Efficient Knowledge Graph
Construction [57.854498238624366]
本稿では,データ効率のよい知識グラフ構築のためのRAP(Schema-Aware Reference As Prompt)の検索手法を提案する。
RAPは、人間の注釈付きおよび弱教師付きデータから受け継いだスキーマと知識を、各サンプルのプロンプトとして動的に活用することができる。
論文 参考訳(メタデータ) (2022-10-19T16:40:28Z) - Incorporating Causal Graphical Prior Knowledge into Predictive Modeling
via Simple Data Augmentation [92.96204497841032]
因果グラフ(CG)は、データ分散の背後にあるデータ生成プロセスの知識のコンパクトな表現である。
本研究では,条件付き独立性(CI)関係の事前知識を活用可能なモデルに依存しないデータ拡張手法を提案する。
本手法は,小データシステムにおける予測精度の向上に有効であることを実験的に示した。
論文 参考訳(メタデータ) (2021-02-27T06:13:59Z) - Exploring the Limits of Few-Shot Link Prediction in Knowledge Graphs [49.6661602019124]
数発のリンク予測を行うため,本手法の現況を一般化したモデルスペクトルについて検討する。
単純なゼロショットベースライン – 関係性固有の情報を無視する – が驚くほど高いパフォーマンスを実現しているのが分かります。
慎重に構築された合成データセットの実験では、関係の例がいくつかあるだけで、モデルがきめ細かな構造情報を使用するのを基本的に制限することが示されている。
論文 参考訳(メタデータ) (2021-02-05T21:04:31Z) - RelWalk A Latent Variable Model Approach to Knowledge Graph Embedding [50.010601631982425]
本稿では,単語埋め込みのランダムウォークモデル(Arora et al., 2016a)を知識グラフ埋め込み(KGE)に拡張する。
二つの実体 h (head) と t (tail) の間の関係 R の強さを評価するスコア関数を導出する。
理論的解析によって動機付けられた学習目標を提案し,知識グラフからKGEを学習する。
論文 参考訳(メタデータ) (2021-01-25T13:31:29Z) - A Simple Approach to Case-Based Reasoning in Knowledge Bases [56.661396189466664]
我々は,古典人工知能(AI)におけるケースベース推論を想起させる,アンフノトレーニングを必要とする知識グラフ(KG)における推論に対する驚くほど単純かつ正確なアプローチを提案する。
ソースエンティティとバイナリ関係が与えられたターゲットエンティティを見つけるタスクを考えてみましょう。
我々の非パラメトリックなアプローチは、与えられた関係を通して類似したソースエンティティを接続する複数のテキストトグラフパスパターンを見つけることによって、クエリ毎にクレープな論理ルールを導出します。
論文 参考訳(メタデータ) (2020-06-25T06:28:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。