論文の概要: Graphical Reasoning: LLM-based Semi-Open Relation Extraction
- arxiv url: http://arxiv.org/abs/2405.00216v1
- Date: Tue, 30 Apr 2024 21:41:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-02 16:56:48.468270
- Title: Graphical Reasoning: LLM-based Semi-Open Relation Extraction
- Title(参考訳): グラフィカル推論:LLMに基づくセミオープン関係抽出
- Authors: Yicheng Tao, Yiqun Wang, Longju Bai,
- Abstract要約: GPT-3.5でテキスト内学習を活用すれば,抽出プロセスが大幅に向上することを示す。
本稿では,関係抽出を逐次的なサブタスクに分解する新しい図式推論手法を提案する。
- 参考スコア(独自算出の注目度): 3.2586315449885106
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a comprehensive exploration of relation extraction utilizing advanced language models, specifically Chain of Thought (CoT) and Graphical Reasoning (GRE) techniques. We demonstrate how leveraging in-context learning with GPT-3.5 can significantly enhance the extraction process, particularly through detailed example-based reasoning. Additionally, we introduce a novel graphical reasoning approach that dissects relation extraction into sequential sub-tasks, improving precision and adaptability in processing complex relational data. Our experiments, conducted on multiple datasets, including manually annotated data, show considerable improvements in performance metrics, underscoring the effectiveness of our methodologies.
- Abstract(参考訳): 本稿では,高度な言語モデル,特にCoT(Chain of Thought)とGRE(Graphical Reasoning)技術を用いた関係抽出の包括的探索について述べる。
GPT-3.5による文脈内学習の活用が,特に詳細な例に基づく推論を通じて抽出過程を大幅に向上させることを示す。
さらに、逐次的なサブタスクへの関係抽出を識別し、複雑な関係データの処理における精度と適応性を向上する、新しいグラフィカル推論手法を導入する。
手動でアノテートしたデータを含む複数のデータセットで実施した本実験は,性能指標の大幅な改善を示し,方法論の有効性を裏付けるものである。
関連論文リスト
- Graph-Augmented Relation Extraction Model with LLMs-Generated Support Document [7.0421339410165045]
本研究では,文レベルの関係抽出(RE)に対する新しいアプローチを提案する。
グラフニューラルネットワーク(GNN)とLarge Language Models(LLM)を統合し、コンテキストに富んだサポートドキュメントを生成する。
そこで,CrossREデータセットを用いて実験を行い,本手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-10-30T20:48:34Z) - Retrieval-Augmented Generation-based Relation Extraction [0.0]
Retrieved-Augmented Generation-based Relation extract (RAG4RE) を提案する。
本研究は,Large Language Models (LLM) を用いたRAG4RE手法の有効性を評価する。
我々のRAG4REアプローチが従来のREアプローチよりも優れていることを示す。
論文 参考訳(メタデータ) (2024-04-20T14:42:43Z) - C-ICL: Contrastive In-context Learning for Information Extraction [54.39470114243744]
c-ICLは、正しいサンプル構築と間違ったサンプル構築の両方を活用して、コンテキスト内学習のデモを作成する、新しい数ショット技術である。
各種データセットに対する実験により,c-ICLは従来の数発のインコンテキスト学習法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-02-17T11:28:08Z) - Leveraging Knowledge Graph Embeddings to Enhance Contextual
Representations for Relation Extraction [0.0]
コーパススケールに事前学習した知識グラフを組み込んだ文レベルの文脈表現への関係抽出手法を提案する。
提案手法の有望かつ非常に興味深い結果を示す一連の実験を行った。
論文 参考訳(メタデータ) (2023-06-07T07:15:20Z) - Improving Long Tailed Document-Level Relation Extraction via Easy
Relation Augmentation and Contrastive Learning [66.83982926437547]
我々は,DocREが現実のシナリオにおいて,長期分布問題の緩和に不可欠であると主張する。
長期分布問題に動機付けられ,DocREを改善するための簡易関係拡張法(ERA)を提案する。
論文 参考訳(メタデータ) (2022-05-21T06:15:11Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
本稿では,関係抽出のための中間ステップ(SAIS)を監督し,拡張することにより,関連コンテキストやエンティティタイプをキャプチャするモデルを明示的に教えることを提案する。
そこで本提案手法は,より効果的な管理を行うため,より優れた品質の関係を抽出するだけでなく,それに対応する証拠をより正確に抽出する。
論文 参考訳(メタデータ) (2021-09-24T17:37:35Z) - D-REX: Dialogue Relation Extraction with Explanations [65.3862263565638]
この研究は、部分的にラベル付けされたデータのみを使用しながら関係が存在することを示す説明を抽出することに焦点を当てている。
本稿では,政策誘導型半教師付きアルゴリズムD-REXを提案する。
約90%の人は、強いBERTに基づく関節関係抽出と説明モデルよりもD-REXの説明を好んでいる。
論文 参考訳(メタデータ) (2021-09-10T22:30:48Z) - Improving BERT Model Using Contrastive Learning for Biomedical Relation
Extraction [13.354066085659198]
対比学習は、テキストデータの一般的なデータ拡張方法が不足しているため、自然言語処理では広く利用されていない。
本研究では, 対比学習を用いてBERTモデルからのテキスト表現を改善し, 関係抽出を行う手法を検討する。
3つの関係抽出ベンチマークデータセットの実験結果から,本手法がBERTモデル表現を改善し,最新性能を達成できることが示された。
論文 参考訳(メタデータ) (2021-04-28T17:50:24Z) - S^3-Rec: Self-Supervised Learning for Sequential Recommendation with
Mutual Information Maximization [104.87483578308526]
本稿では,シーケンスレコメンデーションのための自己改善学習のためのモデルS3-Recを提案する。
そこで本稿では,属性,項目,サブシーケンス,シーケンス間の相関関係を学習するために,4つの補助的自己教師対象を考案する。
6つの実世界のデータセットで実施された大規模な実験は、既存の最先端手法よりも提案手法が優れていることを示す。
論文 参考訳(メタデータ) (2020-08-18T11:44:10Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
エンドツーエンドABSAのためのマルチタスク学習を用いた対話型アーキテクチャを新たに提案する。
このモデルは、よく設計された依存性関係埋め込みグラフ畳み込みネットワーク(DreGcn)を活用することで、構文知識(依存性関係と型)を完全に活用することができる。
3つのベンチマークデータセットの大規模な実験結果から,本手法の有効性が示された。
論文 参考訳(メタデータ) (2020-04-04T14:59:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。