Reasoning Abilities of Large Language Models: In-Depth Analysis on the Abstraction and Reasoning Corpus
- URL: http://arxiv.org/abs/2403.11793v2
- Date: Thu, 12 Sep 2024 23:08:08 GMT
- Title: Reasoning Abilities of Large Language Models: In-Depth Analysis on the Abstraction and Reasoning Corpus
- Authors: Seungpil Lee, Woochang Sim, Donghyeon Shin, Wongyu Seo, Jiwon Park, Seokki Lee, Sanha Hwang, Sejin Kim, Sundong Kim,
- Abstract summary: We introduce a new approach to evaluate the inference and contextual understanding abilities of large language models.
We use the Abstraction and Reasoning Corpus dataset to evaluate the inference and contextual understanding abilities of large language models.
- Score: 4.569421189811511
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The existing methods for evaluating the inference abilities of Large Language Models (LLMs) have been results-centric, making it difficult to assess the inference process. We introduce a new approach using the Abstraction and Reasoning Corpus (ARC) dataset to evaluate the inference and contextual understanding abilities of large language models in a process-centric manner. ARC demands rigorous logical structures for problem-solving, making it a benchmark that facilitates the comparison of model inference abilities with humans. Experimental results confirm that while large language models possess weak inference abilities, they still lag in terms of logical coherence, compositionality, and productivity. Our experiments highlight the reasoning capabilities of LLMs, proposing development paths for achieving human-level reasoning.
Related papers
- Learning-to-Defer for Extractive Question Answering [0.0]
We introduce an adapted two-stage Learning-to-Defer mechanism that enhances decision-making by enabling selective deference to human experts or larger models without retraining language models in the context of question-answering.
Our results demonstrate that deferring a minimal number of queries allows the smaller model to achieve performance comparable to their larger counterparts while preserving computing efficiency.
arXiv Detail & Related papers (2024-10-21T08:21:00Z) - Enhancing Logical Reasoning in Large Language Models through Graph-based Synthetic Data [53.433309883370974]
This work explores the potential and limitations of using graph-based synthetic reasoning data as training signals to enhance Large Language Models' reasoning capabilities.
Our experiments, conducted on two established natural language reasoning tasks, demonstrate that supervised fine-tuning with synthetic graph-based reasoning data effectively enhances LLMs' reasoning performance without compromising their effectiveness on other standard evaluation benchmarks.
arXiv Detail & Related papers (2024-09-19T03:39:09Z) - A Systematic Analysis of Large Language Models as Soft Reasoners: The Case of Syllogistic Inferences [5.141416267381492]
We consider the case of syllogistic reasoning, an area of deductive reasoning studied extensively in logic and cognitive psychology.
We investigate the effects of chain-of-thought reasoning, in-context learning, and supervised fine-tuning on syllogistic reasoning.
Our results suggest that the behavior of pre-trained LLMs can be explained by cognitive science.
arXiv Detail & Related papers (2024-06-17T08:59:04Z) - Conceptual and Unbiased Reasoning in Language Models [98.90677711523645]
We propose a novel conceptualization framework that forces models to perform conceptual reasoning on abstract questions.
We show that existing large language models fall short on conceptual reasoning, dropping 9% to 28% on various benchmarks.
We then discuss how models can improve since high-level abstract reasoning is key to unbiased and generalizable decision-making.
arXiv Detail & Related papers (2024-03-30T00:53:53Z) - Comparing Inferential Strategies of Humans and Large Language Models in Deductive Reasoning [25.732397636695882]
We show that large language models (LLMs) display reasoning patterns akin to those observed in humans.
Our research demonstrates that the architecture and scale of the model significantly affect its preferred method of reasoning.
arXiv Detail & Related papers (2024-02-20T12:58:14Z) - From Heuristic to Analytic: Cognitively Motivated Strategies for
Coherent Physical Commonsense Reasoning [66.98861219674039]
Heuristic-Analytic Reasoning (HAR) strategies drastically improve the coherence of rationalizations for model decisions.
Our findings suggest that human-like reasoning strategies can effectively improve the coherence and reliability of PLM reasoning.
arXiv Detail & Related papers (2023-10-24T19:46:04Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
Large language models (LLMs) have demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems.
LLMs excel most in abductive reasoning, followed by deductive reasoning, while they are least effective at inductive reasoning.
We study single-task training, multi-task training, and "chain-of-thought" knowledge distillation fine-tuning technique to assess the performance of model.
arXiv Detail & Related papers (2023-10-02T01:00:50Z) - RAVEN: In-Context Learning with Retrieval-Augmented Encoder-Decoder Language Models [57.12888828853409]
RAVEN is a model that combines retrieval-augmented masked language modeling and prefix language modeling.
Fusion-in-Context Learning enables the model to leverage more in-context examples without requiring additional training.
Our work underscores the potential of retrieval-augmented encoder-decoder language models for in-context learning.
arXiv Detail & Related papers (2023-08-15T17:59:18Z) - Learning a Structural Causal Model for Intuition Reasoning in
Conversation [20.243323155177766]
Reasoning, a crucial aspect of NLP research, has not been adequately addressed by prevailing models.
We develop a conversation cognitive model ( CCM) that explains how each utterance receives and activates channels of information.
By leveraging variational inference, it explores substitutes for implicit causes, addresses the issue of their unobservability, and reconstructs the causal representations of utterances through the evidence lower bounds.
arXiv Detail & Related papers (2023-05-28T13:54:09Z) - In-Context Analogical Reasoning with Pre-Trained Language Models [10.344428417489237]
We explore the use of intuitive language-based abstractions to support analogy in AI systems.
Specifically, we apply large pre-trained language models (PLMs) to visual Raven's Progressive Matrices ( RPM)
We find that PLMs exhibit a striking capacity for zero-shot relational reasoning, exceeding human performance and nearing supervised vision-based methods.
arXiv Detail & Related papers (2023-05-28T04:22:26Z) - LogiGAN: Learning Logical Reasoning via Adversarial Pre-training [58.11043285534766]
We present LogiGAN, an unsupervised adversarial pre-training framework for improving logical reasoning abilities of language models.
Inspired by the facilitation effect of reflective thinking in human learning, we simulate the learning-thinking process with an adversarial Generator-Verifier architecture.
Both base and large size language models pre-trained with LogiGAN demonstrate obvious performance improvement on 12 datasets.
arXiv Detail & Related papers (2022-05-18T08:46:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.