論文の概要: Reinforcement Learning with Latent State Inference for Autonomous On-ramp Merging under Observation Delay
- arxiv url: http://arxiv.org/abs/2403.11852v2
- Date: Tue, 19 Mar 2024 02:46:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 20:00:12.482106
- Title: Reinforcement Learning with Latent State Inference for Autonomous On-ramp Merging under Observation Delay
- Title(参考訳): 遅延状態推論による観測遅延下での自律型オンランプマージの強化学習
- Authors: Amin Tabrizian, Zhitong Huang, Peng Wei,
- Abstract要約: 遅延状態推論・安全制御(L3IS)エージェントを用いたレーンキーピング・レーンチェンジについて紹介する。
L3ISは、周囲の車両の意図や運転スタイルに関する包括的な知識を必要とせずに、オンランプのマージ作業を安全に行うように設計されている。
本稿では,観測遅延を考慮に入れたAL3ISというエージェントを改良し,実環境においてより堅牢な決定を行えるようにした。
- 参考スコア(独自算出の注目度): 6.0111084468944
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a novel approach to address the challenging problem of autonomous on-ramp merging, where a self-driving vehicle needs to seamlessly integrate into a flow of vehicles on a multi-lane highway. We introduce the Lane-keeping, Lane-changing with Latent-state Inference and Safety Controller (L3IS) agent, designed to perform the on-ramp merging task safely without comprehensive knowledge about surrounding vehicles' intents or driving styles. We also present an augmentation of this agent called AL3IS that accounts for observation delays, allowing the agent to make more robust decisions in real-world environments with vehicle-to-vehicle (V2V) communication delays. By modeling the unobservable aspects of the environment through latent states, such as other drivers' intents, our approach enhances the agent's ability to adapt to dynamic traffic conditions, optimize merging maneuvers, and ensure safe interactions with other vehicles. We demonstrate the effectiveness of our method through extensive simulations generated from real traffic data and compare its performance with existing approaches. L3IS shows a 99.90% success rate in a challenging on-ramp merging case generated from the real US Highway 101 data. We further perform a sensitivity analysis on AL3IS to evaluate its robustness against varying observation delays, which demonstrates an acceptable performance of 93.84% success rate in 1-second V2V communication delay.
- Abstract(参考訳): 本稿では、自動運転車が多車線高速道路の車両の流れにシームレスに統合されるという、自律的なオンランプ統合の課題に対処する新しいアプローチを提案する。
車両の意図や運転スタイルに関する包括的知識を必要とせず,オンランプマージタスクを安全に行うために設計されたL3ISエージェントを用いたレーンキーピング・レーンチェンジについて紹介する。
また、このエージェントであるAL3ISを、観測遅延を考慮し、車車間通信遅延(V2V)を用いて、実環境においてより堅牢な決定を行えるようにした。
他の運転者の意図などの潜伏状態を通じて環境の観測不能な側面をモデル化することにより、我々のアプローチは、エージェントが動的な交通条件に適応し、マージ操作を最適化し、他の車両との安全な相互作用を確保する能力を高める。
実交通データから発生する広範囲なシミュレーションにより,本手法の有効性を実証し,その性能を既存手法と比較する。
L3ISは、実際のアメリカ国道101号線のデータから生成された、ランプ上の合併事件において、99.90%の成功率を示している。
さらに、AL3ISの感度解析を行い、様々な観測遅延に対する頑健さを評価し、1秒間V2V通信遅延における93.84%の成功率を許容できる性能を示す。
関連論文リスト
- SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
制御可能なクローズドループ安全クリティカルシミュレーションフレームワークであるSAFE-SIMを紹介する。
提案手法は,1)現実の環境を深く反映した現実的な長距離安全クリティカルシナリオの生成,2)より包括的でインタラクティブな評価のための制御可能な敵行動の提供,の2つの利点をもたらす。
複数のプランナにまたがるnuScenesとnuPlanデータセットを使用して、我々のフレームワークを実証的に検証し、リアリズムと制御性の両方の改善を実証した。
論文 参考訳(メタデータ) (2023-12-31T04:14:43Z) - Deep Reinforcement Learning for Autonomous Vehicle Intersection
Navigation [0.24578723416255746]
強化学習アルゴリズムは、これらの課題に対処するための有望なアプローチとして登場した。
そこで本研究では,低コスト単一エージェントアプローチを用いて,T断面積を効率よく安全にナビゲートする問題に対処する。
提案手法により,AVはT断面積を効果的にナビゲートし,走行遅延,衝突最小化,総コストの面で従来の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2023-09-30T10:54:02Z) - ReMAV: Reward Modeling of Autonomous Vehicles for Finding Likely Failure
Events [1.84926694477846]
本稿では、まず、オフライン軌道を用いて、既存の自動運転車の挙動を分析するブラックボックステストフレームワークを提案する。
実験の結果,車両衝突,道路物体衝突,歩行者衝突,オフロードステアリング事故の発生率は35,23,48,50%増加した。
論文 参考訳(メタデータ) (2023-08-28T13:09:00Z) - iPLAN: Intent-Aware Planning in Heterogeneous Traffic via Distributed
Multi-Agent Reinforcement Learning [57.24340061741223]
本稿では,高密度および不均一な交通シナリオにおける軌跡や意図を予測できる分散マルチエージェント強化学習(MARL)アルゴリズムを提案する。
インテント対応プランニングのアプローチであるiPLANにより、エージェントは近くのドライバーの意図をローカルな観察からのみ推測できる。
論文 参考訳(メタデータ) (2023-06-09T20:12:02Z) - Towards Robust On-Ramp Merging via Augmented Multimodal Reinforcement
Learning [9.48157144651867]
本稿では,CAVのマルチモーダル強化学習によるロバスト・オン・ランプ・マージに対する新しいアプローチを提案する。
具体的には、運転安全性、快適運転行動、交通効率を考慮に入れ、マークフ決定プロセス(MDP)としてオンランプマージ問題を定式化する。
信頼性の高い統合操作を実現するため,BSMと監視画像を同時に活用してマルチモーダル観測を行う。
論文 参考訳(メタデータ) (2022-07-21T16:34:57Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
本稿では,車間認識を用いたエンドツーエンド学習モデルであるCOOPERNAUTを紹介する。
われわれのAutoCastSim実験は、我々の協調知覚駆動モデルが平均成功率を40%向上させることを示唆している。
論文 参考訳(メタデータ) (2022-05-04T17:55:12Z) - Learning Interaction-aware Guidance Policies for Motion Planning in
Dense Traffic Scenarios [8.484564880157148]
本稿では,高密度交通シナリオにおける対話型モーションプランニングのための新しい枠組みを提案する。
我々は,他車両の協調性に関する国際的ガイダンスを提供するインタラクション対応政策であるDeep Reinforcement Learning (RL) を通じて学習することを提案する。
学習されたポリシーは、ローカル最適化ベースのプランナーを推論し、対話的な振る舞いで誘導し、他の車両が収まらない場合に安全を維持しながら、密集したトラフィックに積極的にマージする。
論文 参考訳(メタデータ) (2021-07-09T16:43:12Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
交差点をナビゲートすることは、自動運転車にとって大きな課題の1つです。
本研究では,交通標識のみが提供された交差点をナビゲート可能なシステムの実装に着目する。
本研究では,時間ステップ毎に加速度と操舵角を予測するためのニューラルネットワークの訓練に用いる,モデルフリーの連続学習アルゴリズムを用いたマルチエージェントシステムを提案する。
論文 参考訳(メタデータ) (2021-04-28T07:54:40Z) - Multi-Modal Fusion Transformer for End-to-End Autonomous Driving [59.60483620730437]
画像表現とLiDAR表現を注目で統合する,新しいマルチモードフュージョントランスフォーマであるTransFuserを提案する。
本手法は, 衝突を76%低減しつつ, 最先端駆動性能を実現する。
論文 参考訳(メタデータ) (2021-04-19T11:48:13Z) - Deep Structured Reactive Planning [94.92994828905984]
自動運転のための新しいデータ駆動型リアクティブ計画目標を提案する。
本モデルは,非常に複雑な操作を成功させる上で,非反応性変種よりも優れることを示す。
論文 参考訳(メタデータ) (2021-01-18T01:43:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。