Agentic Deep Graph Reasoning Yields Self-Organizing Knowledge Networks
- URL: http://arxiv.org/abs/2502.13025v1
- Date: Tue, 18 Feb 2025 16:44:42 GMT
- Title: Agentic Deep Graph Reasoning Yields Self-Organizing Knowledge Networks
- Authors: Markus J. Buehler,
- Abstract summary: We present an agentic, autonomous graph expansion framework that iteratively structures and refines knowledge in situ.
At each step, the system actively generates new concepts and relationships, merges them into a global graph, and formulates subsequent prompts based on its evolving structure.
Our analysis reveals emergent patterns, such as the rise of highly connected 'hub' concepts and the shifting influence of 'bridge' nodes, indicating that agentic, self-reinforcing graph construction can yield open-ended, coherent knowledge structures.
- Score: 0.0
- License:
- Abstract: We present an agentic, autonomous graph expansion framework that iteratively structures and refines knowledge in situ. Unlike conventional knowledge graph construction methods relying on static extraction or single-pass learning, our approach couples a reasoning-native large language model with a continually updated graph representation. At each step, the system actively generates new concepts and relationships, merges them into a global graph, and formulates subsequent prompts based on its evolving structure. Through this feedback-driven loop, the model organizes information into a scale-free network characterized by hub formation, stable modularity, and bridging nodes that link disparate knowledge clusters. Over hundreds of iterations, new nodes and edges continue to appear without saturating, while centrality measures and shortest path distributions evolve to yield increasingly distributed connectivity. Our analysis reveals emergent patterns, such as the rise of highly connected 'hub' concepts and the shifting influence of 'bridge' nodes, indicating that agentic, self-reinforcing graph construction can yield open-ended, coherent knowledge structures. Applied to materials design problems, we present compositional reasoning experiments by extracting node-specific and synergy-level principles to foster genuinely novel knowledge synthesis, yielding cross-domain ideas that transcend rote summarization and strengthen the framework's potential for open-ended scientific discovery. We discuss other applications in scientific discovery and outline future directions for enhancing scalability and interpretability.
Related papers
- In-situ graph reasoning and knowledge expansion using Graph-PReFLexOR [0.0]
We present Graph-PReFLexOR, a framework that combines graph reasoning with symbolic abstraction to dynamically expand domain knowledge.
Inspired by reinforcement learning, it defines reasoning as a structured mapping, where tasks yield knowledge graphs, abstract patterns, and ultimately, final answers.
Results show superior reasoning depth and adaptability, underscoring the potential for transparent, multidisciplinary AI-driven discovery.
arXiv Detail & Related papers (2025-01-14T13:52:41Z) - Neural-Symbolic Reasoning over Knowledge Graphs: A Survey from a Query Perspective [55.79507207292647]
Knowledge graph reasoning is pivotal in various domains such as data mining, artificial intelligence, the Web, and social sciences.
The rise of Neural AI marks a significant advancement, merging the robustness of deep learning with the precision of symbolic reasoning.
The advent of large language models (LLMs) has opened new frontiers in knowledge graph reasoning.
arXiv Detail & Related papers (2024-11-30T18:54:08Z) - Foundations and Frontiers of Graph Learning Theory [81.39078977407719]
Recent advancements in graph learning have revolutionized the way to understand and analyze data with complex structures.
Graph Neural Networks (GNNs), i.e. neural network architectures designed for learning graph representations, have become a popular paradigm.
This article provides a comprehensive summary of the theoretical foundations and breakthroughs concerning the approximation and learning behaviors intrinsic to prevalent graph learning models.
arXiv Detail & Related papers (2024-07-03T14:07:41Z) - G-SAP: Graph-based Structure-Aware Prompt Learning over Heterogeneous Knowledge for Commonsense Reasoning [8.02547453169677]
We propose a novel Graph-based Structure-Aware Prompt Learning Model for commonsense reasoning, named G-SAP.
In particular, an evidence graph is constructed by integrating multiple knowledge sources, i.e. ConceptNet, Wikipedia, and Cambridge Dictionary.
The results reveal a significant advancement over the existing models, especially, with 6.12% improvement over the SoTA LM+GNNs model on the OpenbookQA dataset.
arXiv Detail & Related papers (2024-05-09T08:28:12Z) - Accelerating Scientific Discovery with Generative Knowledge Extraction, Graph-Based Representation, and Multimodal Intelligent Graph Reasoning [0.0]
We have transformed a dataset comprising 1,000 scientific papers into an ontological knowledge graph.
We have calculated node degrees, identified communities and connectivities, and evaluated clustering coefficients and betweenness centrality of pivotal nodes.
The graph has an inherently scale-free nature, is highly connected, and can be used for graph reasoning.
arXiv Detail & Related papers (2024-03-18T17:30:27Z) - Topological Neural Networks: Mitigating the Bottlenecks of Graph Neural
Networks via Higher-Order Interactions [1.994307489466967]
This work starts with a theoretical framework to reveal the impact of network's width, depth, and graph topology on the over-squashing phenomena in message-passing neural networks.
The work drifts towards, higher-order interactions and multi-relational inductive biases via Topological Neural Networks.
Inspired by Graph Attention Networks, two topological attention networks are proposed: Simplicial and Cell Attention Networks.
arXiv Detail & Related papers (2024-02-10T08:26:06Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - Robust Knowledge Adaptation for Dynamic Graph Neural Networks [61.8505228728726]
We propose Ada-DyGNN: a robust knowledge Adaptation framework via reinforcement learning for Dynamic Graph Neural Networks.
Our approach constitutes the first attempt to explore robust knowledge adaptation via reinforcement learning.
Experiments on three benchmark datasets demonstrate that Ada-DyGNN achieves the state-of-the-art performance.
arXiv Detail & Related papers (2022-07-22T02:06:53Z) - Relational representation learning with spike trains [0.0]
We present a model that allows us to learn spike train-based embeddings of knowledge graphs, requiring only one neuron per graph element by fully utilizing the temporal domain of spike patterns.
In general, the presented results show how relational knowledge can be integrated into spike-based systems, opening up the possibility of merging event-based computing and data to build powerful and energy efficient artificial intelligence applications and reasoning systems.
arXiv Detail & Related papers (2022-05-18T18:00:37Z) - Reinforced Neighborhood Selection Guided Multi-Relational Graph Neural
Networks [68.9026534589483]
RioGNN is a novel Reinforced, recursive and flexible neighborhood selection guided multi-relational Graph Neural Network architecture.
RioGNN can learn more discriminative node embedding with enhanced explainability due to the recognition of individual importance of each relation.
arXiv Detail & Related papers (2021-04-16T04:30:06Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.