論文の概要: Ultraman: Single Image 3D Human Reconstruction with Ultra Speed and Detail
- arxiv url: http://arxiv.org/abs/2403.12028v1
- Date: Mon, 18 Mar 2024 17:57:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 19:01:22.191284
- Title: Ultraman: Single Image 3D Human Reconstruction with Ultra Speed and Detail
- Title(参考訳): ウルトラマン:ウルトラスピードと細部を兼ね備えた1枚の3D人間の再構築
- Authors: Mingjin Chen, Junhao Chen, Xiaojun Ye, Huan-ang Gao, Xiaoxue Chen, Zhaoxin Fan, Hao Zhao,
- Abstract要約: 本研究では,1つの画像からテクスチャ化された3次元人間のモデルを高速に再構成するためのemphUltramanという手法を提案する。
emphUltramanは、高品質なテクスチャの詳細を保存しながら、再構築のスピードと精度を大幅に改善する。
- 参考スコア(独自算出の注目度): 11.604919466757003
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: 3D human body reconstruction has been a challenge in the field of computer vision. Previous methods are often time-consuming and difficult to capture the detailed appearance of the human body. In this paper, we propose a new method called \emph{Ultraman} for fast reconstruction of textured 3D human models from a single image. Compared to existing techniques, \emph{Ultraman} greatly improves the reconstruction speed and accuracy while preserving high-quality texture details. We present a set of new frameworks for human reconstruction consisting of three parts, geometric reconstruction, texture generation and texture mapping. Firstly, a mesh reconstruction framework is used, which accurately extracts 3D human shapes from a single image. At the same time, we propose a method to generate a multi-view consistent image of the human body based on a single image. This is finally combined with a novel texture mapping method to optimize texture details and ensure color consistency during reconstruction. Through extensive experiments and evaluations, we demonstrate the superior performance of \emph{Ultraman} on various standard datasets. In addition, \emph{Ultraman} outperforms state-of-the-art methods in terms of human rendering quality and speed. Upon acceptance of the article, we will make the code and data publicly available.
- Abstract(参考訳): 3Dの人体再構築はコンピュータビジョンの分野において課題となっている。
従来の方法は、しばしば時間がかかり、人体の詳細な外観を捉えるのが困難である。
本論文では,1枚の画像からテクスチャ化された3次元人間のモデルを高速に再現する手法である「emph{Ultraman}」を提案する。
既存の技術と比較すると, 高品質なテクスチャの詳細を保存しながら, 復元速度と精度を大幅に向上させる。
本稿では,3つの部分,幾何学的再構成,テクスチャ生成,テクスチャマッピングからなる,人間の再構築のための新しい枠組みを提案する。
まず、メッシュ再構成フレームワークを使用し、単一の画像から正確に3次元の人体形状を抽出する。
同時に,一つの画像に基づいて人体の多視点一貫した画像を生成する手法を提案する。
最終的に、テクスチャの細部を最適化し、再構築時の色の整合性を確保する新しいテクスチャマッピング手法と組み合わせられる。
実験や評価を通じて,各種標準データセット上での \emph{Ultraman} の優れた性能を示す。
さらに、emph{Ultraman} は人間のレンダリング品質とスピードの点で最先端の手法よりも優れています。
この記事が受理されると、コードとデータを公開します。
関連論文リスト
- GTR: Improving Large 3D Reconstruction Models through Geometry and Texture Refinement [51.97726804507328]
マルチビュー画像から3次元メッシュを再構成する手法を提案する。
提案手法は, 変圧器を用いたトリプレーンジェネレータとニューラルレージアンスフィールド(NeRF)モデルを用いた大規模再構成モデルから着想を得たものである。
論文 参考訳(メタデータ) (2024-06-09T05:19:24Z) - ConTex-Human: Free-View Rendering of Human from a Single Image with
Texture-Consistent Synthesis [49.28239918969784]
テクスチャに一貫性のあるバックビュー合成モジュールを導入し、参照画像コンテンツをバックビューに転送する。
また、テクスチャマッピングとリファインメントのための可視性対応パッチ整合性正規化と、合成したバックビューテクスチャの組み合わせを提案する。
論文 参考訳(メタデータ) (2023-11-28T13:55:53Z) - SiTH: Single-view Textured Human Reconstruction with Image-Conditioned Diffusion [35.73448283467723]
SiTHは、イメージ条件付き拡散モデルと3Dメッシュ再構築ワークフローを統合する、新しいパイプラインである。
我々は、入力画像に基づいて、見えないバックビューの外観を幻覚させるために、強力な生成拡散モデルを用いる。
後者では,入力画像とバックビュー画像から全身のテクスチャメッシュを復元するためのガイダンスとして,肌付きボディーメッシュを利用する。
論文 参考訳(メタデータ) (2023-11-27T14:22:07Z) - TeCH: Text-guided Reconstruction of Lifelike Clothed Humans [35.68114652041377]
既存の方法は、ぼやけたテクスチャで非常に滑らかな裏面を生成することが多い。
基礎モデルの力に触発されて、TeCHは記述的テキストプロンプトを利用して3D人間を再構築する。
そこで本研究では,DMTetをベースとした3次元ハイブリッド表現を提案する。
論文 参考訳(メタデータ) (2023-08-16T17:59:13Z) - ReFu: Refine and Fuse the Unobserved View for Detail-Preserving
Single-Image 3D Human Reconstruction [31.782985891629448]
シングルイメージの3次元再構成は,1枚の画像から人体の3次元テクスチャ面を再構築することを目的としている。
提案するReFuは、投影された背景像を精細化し、その精細な画像を融合して最終人体を予測するための粗大なアプローチである。
論文 参考訳(メタデータ) (2022-11-09T09:14:11Z) - ARCH++: Animation-Ready Clothed Human Reconstruction Revisited [82.83445332309238]
任意の服装スタイルで3Dアバターを再構成する画像ベースARCH++を提案する。
再建されたアバターは、入力ビューから見える領域と見えない領域の両方において、アニメーションに対応しており、非常にリアルである。
論文 参考訳(メタデータ) (2021-08-17T19:27:12Z) - Detailed Avatar Recovery from Single Image [50.82102098057822]
本稿では,単一画像からエンフデテールアバターを回収するための新しい枠組みを提案する。
階層的メッシュ変形フレームワークでは、ディープニューラルネットワークを使用して3次元形状を洗練しています。
本手法は,皮膚モデルを超えて,完全なテクスチャで詳細な人体形状を復元することができる。
論文 参考訳(メタデータ) (2021-08-06T03:51:26Z) - Deep3DPose: Realtime Reconstruction of Arbitrarily Posed Human Bodies
from Single RGB Images [5.775625085664381]
本研究では,3次元人間のポーズを正確に再構築し,単一画像から詳細な3次元フルボディ幾何モデルをリアルタイムに構築する手法を提案する。
このアプローチの鍵となるアイデアは、単一のイメージを使用して5つの出力を同時に予測する、新しいエンドツーエンドのマルチタスクディープラーニングフレームワークである。
本研究では,3次元人体フロンティアを進化させ,定量的評価と最先端手法との比較により,単一画像からの再構築を図っている。
論文 参考訳(メタデータ) (2021-06-22T04:26:11Z) - Fast-GANFIT: Generative Adversarial Network for High Fidelity 3D Face
Reconstruction [76.1612334630256]
我々は、GAN(Generative Adversarial Networks)とDCNN(Deep Convolutional Neural Networks)の力を利用して、単一画像から顔のテクスチャと形状を再構築する。
3次元顔再構成を保存したフォトリアリスティックでアイデンティティに優れた結果を示し, 初めて, 高精度な顔テクスチャ再構成を実現する。
論文 参考訳(メタデータ) (2021-05-16T16:35:44Z) - Neural Re-Rendering of Humans from a Single Image [80.53438609047896]
本稿では,新しいユーザ定義のポーズと視点の下での人間のニューラルリレンダリング手法を提案する。
私たちのアルゴリズムは、単一の画像から再構築できるパラメトリックメッシュとして体ポーズと形状を表します。
論文 参考訳(メタデータ) (2021-01-11T18:53:47Z) - Multi-View Consistency Loss for Improved Single-Image 3D Reconstruction
of Clothed People [36.30755368202957]
本稿では,1枚の画像から3次元人物形状復元の精度を向上させるための新しい手法を提案する。
衣服、髪、体の大きさ、ポーズ、カメラの視点などによる形状の変化が大きいため、衣服の復元の正確さと完全性は限られている。
論文 参考訳(メタデータ) (2020-09-29T17:18:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。