Tailoring Education with GenAI: A New Horizon in Lesson Planning
- URL: http://arxiv.org/abs/2403.12071v1
- Date: Mon, 12 Feb 2024 17:30:05 GMT
- Title: Tailoring Education with GenAI: A New Horizon in Lesson Planning
- Authors: Kostas Karpouzis, Dimitris Pantazatos, Joanna Taouki, Kalliopi Meli,
- Abstract summary: This study introduces a GenAI tool, designed as a digital assistant for educators, enabling the creation of customized lesson plans.
The tool utilizes an innovative feature termed 'interactive mega-prompt,' a comprehensive query system that allows educators to input detailed classroom specifics.
To evaluate the tool's effectiveness, a comprehensive methodology incorporating both quantitative (i.e., % of time savings) and qualitative (i.e., user satisfaction) criteria was implemented.
- Score: 0.21427777919040414
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The advent of Generative AI (GenAI) in education presents a transformative approach to traditional teaching methodologies, which often overlook the diverse needs of individual students. This study introduces a GenAI tool, based on advanced natural language processing, designed as a digital assistant for educators, enabling the creation of customized lesson plans. The tool utilizes an innovative feature termed 'interactive mega-prompt,' a comprehensive query system that allows educators to input detailed classroom specifics such as student demographics, learning objectives, and preferred teaching styles. This input is then processed by the GenAI to generate tailored lesson plans. To evaluate the tool's effectiveness, a comprehensive methodology incorporating both quantitative (i.e., % of time savings) and qualitative (i.e., user satisfaction) criteria was implemented, spanning various subjects and educational levels, with continuous feedback collected from educators through a structured evaluation form. Preliminary results show that educators find the GenAI-generated lesson plans effective, significantly reducing lesson planning time and enhancing the learning experience by accommodating diverse student needs. This AI-driven approach signifies a paradigm shift in education, suggesting its potential applicability in broader educational contexts, including special education needs (SEN), where individualized attention and specific learning aids are paramount
Related papers
- BoilerTAI: A Platform for Enhancing Instruction Using Generative AI in Educational Forums [0.0]
This paper describes a practical, scalable platform that seamlessly integrates Generative AI (GenAI) with online educational forums.
The platform empowers instructional staff to efficiently manage, refine, and approve responses by facilitating interaction between student posts and a Large Language Model (LLM)
arXiv Detail & Related papers (2024-09-20T04:00:30Z) - Framework for Adoption of Generative Artificial Intelligence (GenAI) in Education [0.032771631221674334]
This study focuses on examining the university education system and assessing the opportunities and challenges related to incorporating GenAI in teaching and learning.
It identifies a gap and the absence of a comprehensive framework that obstructs the effective integration of GenAI within the academic environment.
arXiv Detail & Related papers (2024-07-21T12:02:28Z) - Toward In-Context Teaching: Adapting Examples to Students' Misconceptions [54.82965010592045]
We introduce a suite of models and evaluation methods we call AdapT.
AToM is a new probabilistic model for adaptive teaching that jointly infers students' past beliefs and optimize for the correctness of future beliefs.
Our results highlight both the difficulty of the adaptive teaching task and the potential of learned adaptive models for solving it.
arXiv Detail & Related papers (2024-05-07T17:05:27Z) - Evaluating and Optimizing Educational Content with Large Language Model Judgments [52.33701672559594]
We use Language Models (LMs) as educational experts to assess the impact of various instructions on learning outcomes.
We introduce an instruction optimization approach in which one LM generates instructional materials using the judgments of another LM as a reward function.
Human teachers' evaluations of these LM-generated worksheets show a significant alignment between the LM judgments and human teacher preferences.
arXiv Detail & Related papers (2024-03-05T09:09:15Z) - A Review of Data Mining in Personalized Education: Current Trends and
Future Prospects [30.033926908231297]
This paper focuses on four scenarios: educational recommendation, cognitive diagnosis, knowledge tracing, and learning analysis.
The integration of AI in educational platforms provides insights into academic performance, learning preferences, and behaviors, optimizing the personal learning process.
arXiv Detail & Related papers (2024-02-27T06:09:48Z) - The AI Assessment Scale (AIAS): A Framework for Ethical Integration of Generative AI in Educational Assessment [0.0]
We outline a practical, simple, and sufficiently comprehensive tool to allow for the integration of GenAI tools into educational assessment.
The AI Assessment Scale (AIAS) empowers educators to select the appropriate level of GenAI usage in assessments.
By adopting a practical, flexible approach, the AIAS can form a much-needed starting point to address the current uncertainty and anxiety regarding GenAI in education.
arXiv Detail & Related papers (2023-12-12T09:08:36Z) - Towards Goal-oriented Intelligent Tutoring Systems in Online Education [69.06930979754627]
We propose a new task, named Goal-oriented Intelligent Tutoring Systems (GITS)
GITS aims to enable the student's mastery of a designated concept by strategically planning a customized sequence of exercises and assessment.
We propose a novel graph-based reinforcement learning framework, named Planning-Assessment-Interaction (PAI)
arXiv Detail & Related papers (2023-12-03T12:37:16Z) - Empowering Private Tutoring by Chaining Large Language Models [87.76985829144834]
This work explores the development of a full-fledged intelligent tutoring system powered by state-of-the-art large language models (LLMs)
The system is into three inter-connected core processes-interaction, reflection, and reaction.
Each process is implemented by chaining LLM-powered tools along with dynamically updated memory modules.
arXiv Detail & Related papers (2023-09-15T02:42:03Z) - A Model for Integrating Generative AI into Course Content Development [0.0]
"GAIDE" is a novel framework for using Generative AI (GenAI) to enhance educational content creation.
It aims to streamline content development, encourage the creation of dynamic materials, and demonstrate GenAI's utility in instructional design.
arXiv Detail & Related papers (2023-08-23T17:47:35Z) - Unsupervised Domain Adaptive Person Re-Identification via Human Learning
Imitation [67.52229938775294]
In past years, researchers propose to utilize the teacher-student framework in their methods to decrease the domain gap between different person re-identification datasets.
Inspired by recent teacher-student framework based methods, we propose to conduct further exploration to imitate the human learning process from different aspects.
arXiv Detail & Related papers (2021-11-28T01:14:29Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
The objective of personalized learning is to design an effective knowledge acquisition track that matches the learner's strengths and bypasses her weaknesses to meet her desired goal.
In recent years, the boost of artificial intelligence (AI) and machine learning (ML) has unfolded novel perspectives to enhance personalized education.
arXiv Detail & Related papers (2021-01-19T12:23:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.