Framework for Adoption of Generative Artificial Intelligence (GenAI) in Education
- URL: http://arxiv.org/abs/2408.01443v1
- Date: Sun, 21 Jul 2024 12:02:28 GMT
- Title: Framework for Adoption of Generative Artificial Intelligence (GenAI) in Education
- Authors: Samar Shailendra, Rajan Kadel, Aakanksha Sharma,
- Abstract summary: This study focuses on examining the university education system and assessing the opportunities and challenges related to incorporating GenAI in teaching and learning.
It identifies a gap and the absence of a comprehensive framework that obstructs the effective integration of GenAI within the academic environment.
- Score: 0.032771631221674334
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Contributions: An adoption framework to include GenAI in the university curriculum. It identifies and highlights the role of different stakeholders (university management, students, staff, etc.) during the adoption process. It also proposes an objective approach based upon an evaluation matrix to assess the success and outcome of the GenAI adoption. Background: Universities worldwide are debating and struggling with the adoption of GenAI in their curriculum. Both the faculty and students are unsure about the approach in the absence of clear guidelines through the administration and regulators. This requires an established framework to define a process and articulate the roles and responsibilities of each stakeholder involved. Research Questions: Whether the academic ecosystem requires a methodology to adopt GenAI into its curriculum? A systematic approach for the academic staff to ensure the students' learning outcomes are met with the adoption of GenAI. How to measure and communicate the adoption of GenAI in the university setup? Methodology: The methodology employed in this study focuses on examining the university education system and assessing the opportunities and challenges related to incorporating GenAI in teaching and learning. Additionally, it identifies a gap and the absence of a comprehensive framework that obstructs the effective integration of GenAI within the academic environment. Findings: The literature survey results indicate the limited or no adoption of GenAI by the university, which further reflects the dilemma in the minds of different stakeholders. For the successful adoption of GenAI, a standard framework is proposed i) for effective redesign of the course curriculum, ii) for enabling staff and students, iii) to define an evaluation matrix to measure the effectiveness and success of the adoption process.
Related papers
- BoilerTAI: A Platform for Enhancing Instruction Using Generative AI in Educational Forums [0.0]
This paper describes a practical, scalable platform that seamlessly integrates Generative AI (GenAI) with online educational forums.
The platform empowers instructional staff to efficiently manage, refine, and approve responses by facilitating interaction between student posts and a Large Language Model (LLM)
arXiv Detail & Related papers (2024-09-20T04:00:30Z) - Model-based Maintenance and Evolution with GenAI: A Look into the Future [47.93555901495955]
We argue that Generative Artificial Intelligence (GenAI) can be used as a means to address the limitations of Model-Based Engineering (MBM&E)
We propose that GenAI can be used in MBM&E for: reducing engineers' learning curve, maximizing efficiency with recommendations, or serving as a reasoning tool to understand domain problems.
arXiv Detail & Related papers (2024-07-09T23:13:26Z) - A Systematic Review of Generative AI for Teaching and Learning Practice [0.37282630026096586]
There are no agreed guidelines towards the usage of GenAI systems in higher education.
There is a need for additional interdisciplinary, multidimensional studies in HE through collaboration.
arXiv Detail & Related papers (2024-06-13T18:16:27Z) - Tailoring Education with GenAI: A New Horizon in Lesson Planning [0.21427777919040414]
This study introduces a GenAI tool, designed as a digital assistant for educators, enabling the creation of customized lesson plans.
The tool utilizes an innovative feature termed 'interactive mega-prompt,' a comprehensive query system that allows educators to input detailed classroom specifics.
To evaluate the tool's effectiveness, a comprehensive methodology incorporating both quantitative (i.e., % of time savings) and qualitative (i.e., user satisfaction) criteria was implemented.
arXiv Detail & Related papers (2024-02-12T17:30:05Z) - Bringing Generative AI to Adaptive Learning in Education [58.690250000579496]
We shed light on the intersectional studies of generative AI and adaptive learning.
We argue that this union will contribute significantly to the development of the next-stage learning format in education.
arXiv Detail & Related papers (2024-02-02T23:54:51Z) - The AI Assessment Scale (AIAS): A Framework for Ethical Integration of Generative AI in Educational Assessment [0.0]
We outline a practical, simple, and sufficiently comprehensive tool to allow for the integration of GenAI tools into educational assessment.
The AI Assessment Scale (AIAS) empowers educators to select the appropriate level of GenAI usage in assessments.
By adopting a practical, flexible approach, the AIAS can form a much-needed starting point to address the current uncertainty and anxiety regarding GenAI in education.
arXiv Detail & Related papers (2023-12-12T09:08:36Z) - Towards Goal-oriented Intelligent Tutoring Systems in Online Education [69.06930979754627]
We propose a new task, named Goal-oriented Intelligent Tutoring Systems (GITS)
GITS aims to enable the student's mastery of a designated concept by strategically planning a customized sequence of exercises and assessment.
We propose a novel graph-based reinforcement learning framework, named Planning-Assessment-Interaction (PAI)
arXiv Detail & Related papers (2023-12-03T12:37:16Z) - Innovating Computer Programming Pedagogy: The AI-Lab Framework for
Generative AI Adoption [0.0]
We introduce "AI-Lab," a framework for guiding students in effectively leveraging GenAI within core programming courses.
By identifying and rectifying GenAI's errors, students enrich their learning process.
For educators, AI-Lab provides mechanisms to explore students' perceptions of GenAI's role in their learning experience.
arXiv Detail & Related papers (2023-08-23T17:20:37Z) - Connecting Algorithmic Research and Usage Contexts: A Perspective of
Contextualized Evaluation for Explainable AI [65.44737844681256]
A lack of consensus on how to evaluate explainable AI (XAI) hinders the advancement of the field.
We argue that one way to close the gap is to develop evaluation methods that account for different user requirements.
arXiv Detail & Related papers (2022-06-22T05:17:33Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - Creation and Evaluation of a Pre-tertiary Artificial Intelligence (AI)
Curriculum [58.86139968005518]
The Chinese University of Hong Kong (CUHK)-Jockey Club AI for the Future Project (AI4Future) co-created an AI curriculum for pre-tertiary education.
A team of 14 professors with expertise in engineering and education collaborated with 17 principals and teachers from 6 secondary schools to co-create the curriculum.
The co-creation process generated a variety of resources which enhanced the teachers knowledge in AI, as well as fostered teachers autonomy in bringing the subject matter into their classrooms.
arXiv Detail & Related papers (2021-01-19T11:26:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.