Learning Time Slot Preferences via Mobility Tree for Next POI Recommendation
- URL: http://arxiv.org/abs/2403.12100v1
- Date: Sun, 17 Mar 2024 08:43:12 GMT
- Title: Learning Time Slot Preferences via Mobility Tree for Next POI Recommendation
- Authors: Tianhao Huang, Xuan Pan, Xiangrui Cai, Ying Zhang, Xiaojie Yuan,
- Abstract summary: Next Point-of-Interests (POIs) recommendation task aims to provide a dynamic ranking of POIs based on users' current check-in trajectories.
We introduce an innovative data structure termed the Mobility Tree'', tailored for hierarchically describing users' check-in records.
We propose the Mobility Tree Network (MTNet), a multitask framework for personalized preference learning based on Mobility Trees.
- Score: 18.374589526048446
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Next Point-of-Interests (POIs) recommendation task aims to provide a dynamic ranking of POIs based on users' current check-in trajectories. The recommendation performance of this task is contingent upon a comprehensive understanding of users' personalized behavioral patterns through Location-based Social Networks (LBSNs) data. While prior studies have adeptly captured sequential patterns and transitional relationships within users' check-in trajectories, a noticeable gap persists in devising a mechanism for discerning specialized behavioral patterns during distinct time slots, such as noon, afternoon, or evening. In this paper, we introduce an innovative data structure termed the ``Mobility Tree'', tailored for hierarchically describing users' check-in records. The Mobility Tree encompasses multi-granularity time slot nodes to learn user preferences across varying temporal periods. Meanwhile, we propose the Mobility Tree Network (MTNet), a multitask framework for personalized preference learning based on Mobility Trees. We develop a four-step node interaction operation to propagate feature information from the leaf nodes to the root node. Additionally, we adopt a multitask training strategy to push the model towards learning a robust representation. The comprehensive experimental results demonstrate the superiority of MTNet over ten state-of-the-art next POI recommendation models across three real-world LBSN datasets, substantiating the efficacy of time slot preference learning facilitated by Mobility Tree.
Related papers
- Self-supervised Graph-based Point-of-interest Recommendation [66.58064122520747]
Next Point-of-Interest (POI) recommendation has become a prominent component in location-based e-commerce.
We propose a Self-supervised Graph-enhanced POI Recommender (S2GRec) for next POI recommendation.
In particular, we devise a novel Graph-enhanced Self-attentive layer to incorporate the collaborative signals from both global transition graph and local trajectory graphs.
arXiv Detail & Related papers (2022-10-22T17:29:34Z) - Activity-aware Human Mobility Prediction with Hierarchical Graph
Attention Recurrent Network [6.8500997328311]
We present Hierarchical Graph Attention Recurrent Network (HGARN) for human mobility prediction.
Specifically, we construct a hierarchical graph based on all users' history mobility records.
We employ a Hierarchical Graph Attention Module to capture complex time-activity-location dependencies.
arXiv Detail & Related papers (2022-10-14T12:56:01Z) - Robust Knowledge Adaptation for Dynamic Graph Neural Networks [61.8505228728726]
We propose Ada-DyGNN: a robust knowledge Adaptation framework via reinforcement learning for Dynamic Graph Neural Networks.
Our approach constitutes the first attempt to explore robust knowledge adaptation via reinforcement learning.
Experiments on three benchmark datasets demonstrate that Ada-DyGNN achieves the state-of-the-art performance.
arXiv Detail & Related papers (2022-07-22T02:06:53Z) - Reinforcement Learning based Path Exploration for Sequential Explainable
Recommendation [57.67616822888859]
We propose a novel Temporal Meta-path Guided Explainable Recommendation leveraging Reinforcement Learning (TMER-RL)
TMER-RL utilizes reinforcement item-item path modelling between consecutive items with attention mechanisms to sequentially model dynamic user-item evolutions on dynamic knowledge graph for explainable recommendation.
Extensive evaluations of TMER on two real-world datasets show state-of-the-art performance compared against recent strong baselines.
arXiv Detail & Related papers (2021-11-24T04:34:26Z) - Learning Dual Dynamic Representations on Time-Sliced User-Item
Interaction Graphs for Sequential Recommendation [62.30552176649873]
We devise a novel Dynamic Representation Learning model for Sequential Recommendation (DRL-SRe)
To better model the user-item interactions for characterizing the dynamics from both sides, the proposed model builds a global user-item interaction graph for each time slice.
To enable the model to capture fine-grained temporal information, we propose an auxiliary temporal prediction task over consecutive time slices.
arXiv Detail & Related papers (2021-09-24T07:44:27Z) - Temporal Graph Network Embedding with Causal Anonymous Walks
Representations [54.05212871508062]
We propose a novel approach for dynamic network representation learning based on Temporal Graph Network.
For evaluation, we provide a benchmark pipeline for the evaluation of temporal network embeddings.
We show the applicability and superior performance of our model in the real-world downstream graph machine learning task provided by one of the top European banks.
arXiv Detail & Related papers (2021-08-19T15:39:52Z) - Position-enhanced and Time-aware Graph Convolutional Network for
Sequential Recommendations [3.286961611175469]
We propose a new deep learning-based sequential recommendation approach based on a Position-enhanced and Time-aware Graph Convolutional Network (PTGCN)
PTGCN models the sequential patterns and temporal dynamics between user-item interactions by defining a position-enhanced and time-aware graph convolution operation.
It realizes the high-order connectivity between users and items by stacking multi-layer graph convolutions.
arXiv Detail & Related papers (2021-07-12T07:34:20Z) - STP-UDGAT: Spatial-Temporal-Preference User Dimensional Graph Attention
Network for Next POI Recommendation [22.705788963791445]
Next Point-of-Interest (POI) recommendation is a longstanding problem across the domains of Location-Based Social Networks (LBSN) and transportation.
Recent Recurrent Neural Network (RNN) based approaches learn POI-POI relationships in a local view based on independent user visit sequences.
We propose a novel explore-exploit model that concurrently exploits personalized user preferences and explores new POIs in global spatial-temporal-preference neighbourhoods.
arXiv Detail & Related papers (2020-10-06T04:03:42Z) - TAGNN: Target Attentive Graph Neural Networks for Session-based
Recommendation [66.04457457299218]
We propose a novel target attentive graph neural network (TAGNN) model for session-based recommendation.
In TAGNN, target-aware attention adaptively activates different user interests with respect to varied target items.
The learned interest representation vector varies with different target items, greatly improving the expressiveness of the model.
arXiv Detail & Related papers (2020-05-06T14:17:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.