A hierarchy tree data structure for behavior-based user segment representation
- URL: http://arxiv.org/abs/2508.01115v1
- Date: Fri, 01 Aug 2025 23:33:48 GMT
- Title: A hierarchy tree data structure for behavior-based user segment representation
- Authors: Yang Liu, Xuejiao Kang, Sathya Iyer, Idris Malik, Ruixuan Li, Juan Wang, Xinchen Lu, Xiangxue Zhao, Dayong Wang, Menghan Liu, Isaac Liu, Feng Liang, Yinzhe Yu,
- Abstract summary: Behavior-based User cohort (BUS) is a novel tree-based data structure that hierarchically segments the user universe with various users' categorical attributes.<n>To further bias and improve fairness, we use the social graph to derive the user's connection-based BUS segments.<n>Our offline analysis shows that the BUS-based retrieval significantly outperforms traditional user-based aggregation on ranking quality.
- Score: 11.802591639180466
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: User attributes are essential in multiple stages of modern recommendation systems and are particularly important for mitigating the cold-start problem and improving the experience of new or infrequent users. We propose Behavior-based User Segmentation (BUS), a novel tree-based data structure that hierarchically segments the user universe with various users' categorical attributes based on the users' product-specific engagement behaviors. During the BUS tree construction, we use Normalized Discounted Cumulative Gain (NDCG) as the objective function to maximize the behavioral representativeness of marginal users relative to active users in the same segment. The constructed BUS tree undergoes further processing and aggregation across the leaf nodes and internal nodes, allowing the generation of popular social content and behavioral patterns for each node in the tree. To further mitigate bias and improve fairness, we use the social graph to derive the user's connection-based BUS segments, enabling the combination of behavioral patterns extracted from both the user's own segment and connection-based segments as the connection aware BUS-based recommendation. Our offline analysis shows that the BUS-based retrieval significantly outperforms traditional user cohort-based aggregation on ranking quality. We have successfully deployed our data structure and machine learning algorithm and tested it with various production traffic serving billions of users daily, achieving statistically significant improvements in the online product metrics, including music ranking and email notifications. To the best of our knowledge, our study represents the first list-wise learning-to-rank framework for tree-based recommendation that effectively integrates diverse user categorical attributes while preserving real-world semantic interpretability at a large industrial scale.
Related papers
- Learning Time Slot Preferences via Mobility Tree for Next POI Recommendation [18.374589526048446]
Next Point-of-Interests (POIs) recommendation task aims to provide a dynamic ranking of POIs based on users' current check-in trajectories.
We introduce an innovative data structure termed the Mobility Tree'', tailored for hierarchically describing users' check-in records.
We propose the Mobility Tree Network (MTNet), a multitask framework for personalized preference learning based on Mobility Trees.
arXiv Detail & Related papers (2024-03-17T08:43:12Z) - Enhancing User Intent Capture in Session-Based Recommendation with
Attribute Patterns [77.19390850643944]
We propose the Frequent Attribute Pattern Augmented Transformer (FAPAT)
FAPAT characterizes user intents by building attribute transition graphs and matching attribute patterns.
We demonstrate that FAPAT consistently outperforms state-of-the-art methods by an average of 4.5% across various evaluation metrics.
arXiv Detail & Related papers (2023-12-23T03:28:18Z) - Ranking-based Group Identification via Factorized Attention on Social
Tripartite Graph [68.08590487960475]
We propose a novel GNN-based framework named Contextualized Factorized Attention for Group identification (CFAG)
We devise tripartite graph convolution layers to aggregate information from different types of neighborhoods among users, groups, and items.
To cope with the data sparsity issue, we devise a novel propagation augmentation layer, which is based on our proposed factorized attention mechanism.
arXiv Detail & Related papers (2022-11-02T01:42:20Z) - Ordinal Graph Gamma Belief Network for Social Recommender Systems [54.9487910312535]
We develop a hierarchical Bayesian model termed ordinal graph factor analysis (OGFA), which jointly models user-item and user-user interactions.
OGFA not only achieves good recommendation performance, but also extracts interpretable latent factors corresponding to representative user preferences.
We extend OGFA to ordinal graph gamma belief network, which is a multi-stochastic-layer deep probabilistic model.
arXiv Detail & Related papers (2022-09-12T09:19:22Z) - IA-GCN: Interactive Graph Convolutional Network for Recommendation [13.207235494649343]
Graph Convolutional Network (GCN) has become a novel state-of-the-art for Collaborative Filtering (CF) based Recommender Systems (RS)
We build bilateral interactive guidance between each user-item pair and propose a new model named IA-GCN (short for InterActive GCN)
Our model is built on top of LightGCN, a state-of-the-art GCN model for CF, and can be combined with various GCN-based CF architectures in an end-to-end fashion.
arXiv Detail & Related papers (2022-04-08T03:38:09Z) - Knowledge-Enhanced Hierarchical Graph Transformer Network for
Multi-Behavior Recommendation [56.12499090935242]
This work proposes a Knowledge-Enhanced Hierarchical Graph Transformer Network (KHGT) to investigate multi-typed interactive patterns between users and items in recommender systems.
KHGT is built upon a graph-structured neural architecture to capture type-specific behavior characteristics.
We show that KHGT consistently outperforms many state-of-the-art recommendation methods across various evaluation settings.
arXiv Detail & Related papers (2021-10-08T09:44:00Z) - Graph Convolutional Embeddings for Recommender Systems [67.5973695167534]
We propose a graph convolutional embedding layer for N-partite graphs that processes user-item-context interactions.
More specifically, we define a graph convolutional embedding layer for N-partite graphs that processes user-item-context interactions.
arXiv Detail & Related papers (2021-03-05T10:46:16Z) - Interactive Steering of Hierarchical Clustering [30.371250297444703]
We present an interactive steering method to visually supervise constrained hierarchical clustering by utilizing both public knowledge (e.g., Wikipedia) and private knowledge from users.
The novelty of our approach includes 1) automatically constructing constraints for hierarchical clustering using knowledge (knowledge-driven) and intrinsic data distribution (data-driven)
To clearly convey the hierarchical clustering results, an uncertainty-aware tree visualization has been developed to enable users to quickly locate the most uncertain sub-hierarchies.
arXiv Detail & Related papers (2020-09-21T05:26:07Z) - FREEtree: A Tree-based Approach for High Dimensional Longitudinal Data
With Correlated Features [2.00191482700544]
FREEtree is a tree-based method for high dimensional longitudinal data with correlated features.
It exploits the network structure of the features by first clustering them using weighted correlation network analysis.
It then conducts a screening step within each cluster of features and a selection step among the surviving features.
arXiv Detail & Related papers (2020-06-17T07:28:11Z) - Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning [82.46332224556257]
We propose a novel adversarial learning approach by leveraging user interaction data for the Knowledge Graph Completion task.
Our generator is isolated from user interaction data, and serves to improve the performance of the discriminator.
To discover implicit entity preference of users, we design an elaborate collaborative learning algorithms based on graph neural networks.
arXiv Detail & Related papers (2020-03-28T05:47:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.