Unsupervised End-to-End Training with a Self-Defined Target
- URL: http://arxiv.org/abs/2403.12116v4
- Date: Thu, 21 Nov 2024 09:50:30 GMT
- Title: Unsupervised End-to-End Training with a Self-Defined Target
- Authors: Dongshu Liu, Jérémie Laydevant, Adrien Pontlevy, Damien Querlioz, Julie Grollier,
- Abstract summary: We propose a method enabling networks or hardware designed for end-to-end supervised learning to also perform high-performance unsupervised learning.
We extend this method to semi-supervised learning, adjusting targets based on data type, achieving 96.6% accuracy with only 600 labeled MNIST samples in a multi-layer perceptron.
- Score: 2.6563873893593826
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Designing algorithms for versatile AI hardware that can learn on the edge using both labeled and unlabeled data is challenging. Deep end-to-end training methods incorporating phases of self-supervised and supervised learning are accurate and adaptable to input data but self-supervised learning requires even more computational and memory resources than supervised learning, too high for current embedded hardware. Conversely, unsupervised layer-by-layer training, such as Hebbian learning, is more compatible with existing hardware but does not integrate well with supervised learning. To address this, we propose a method enabling networks or hardware designed for end-to-end supervised learning to also perform high-performance unsupervised learning by adding two simple elements to the output layer: Winner-Take-All (WTA) selectivity and homeostasis regularization. These mechanisms introduce a "self-defined target" for unlabeled data, allowing purely unsupervised training for both fully-connected and convolutional layers using backpropagation or equilibrium propagation on datasets like MNIST (up to 99.2%), Fashion-MNIST (up to 90.3%), and SVHN (up to 81.5%). We extend this method to semi-supervised learning, adjusting targets based on data type, achieving 96.6% accuracy with only 600 labeled MNIST samples in a multi-layer perceptron. Our results show that this approach can effectively enable networks and hardware initially dedicated to supervised learning to also perform unsupervised learning, adapting to varying availability of labeled data.
Related papers
- Incremental Self-training for Semi-supervised Learning [56.57057576885672]
IST is simple yet effective and fits existing self-training-based semi-supervised learning methods.
We verify the proposed IST on five datasets and two types of backbone, effectively improving the recognition accuracy and learning speed.
arXiv Detail & Related papers (2024-04-14T05:02:00Z) - Deep Reinforcement Learning Assisted Federated Learning Algorithm for
Data Management of IIoT [82.33080550378068]
The continuous expanded scale of the industrial Internet of Things (IIoT) leads to IIoT equipments generating massive amounts of user data every moment.
How to manage these time series data in an efficient and safe way in the field of IIoT is still an open issue.
This paper studies the FL technology applications to manage IIoT equipment data in wireless network environments.
arXiv Detail & Related papers (2022-02-03T07:12:36Z) - Motivating Learners in Multi-Orchestrator Mobile Edge Learning: A
Stackelberg Game Approach [54.28419430315478]
Mobile Edge Learning enables distributed training of Machine Learning models over heterogeneous edge devices.
In MEL, the training performance deteriorates without the availability of sufficient training data or computing resources.
We propose an incentive mechanism, where we formulate the orchestrators-learners interactions as a 2-round Stackelberg game.
arXiv Detail & Related papers (2021-09-25T17:27:48Z) - Investigating a Baseline Of Self Supervised Learning Towards Reducing
Labeling Costs For Image Classification [0.0]
The study implements the kaggle.com' cats-vs-dogs dataset, Mnist and Fashion-Mnist to investigate the self-supervised learning task.
Results show that the pretext process in the self-supervised learning improves the accuracy around 15% in the downstream classification task.
arXiv Detail & Related papers (2021-08-17T06:43:05Z) - Towards Reducing Labeling Cost in Deep Object Detection [61.010693873330446]
We propose a unified framework for active learning, that considers both the uncertainty and the robustness of the detector.
Our method is able to pseudo-label the very confident predictions, suppressing a potential distribution drift.
arXiv Detail & Related papers (2021-06-22T16:53:09Z) - MUSCLE: Strengthening Semi-Supervised Learning Via Concurrent
Unsupervised Learning Using Mutual Information Maximization [29.368950377171995]
We introduce Mutual-information-based Unsupervised & Semi-supervised Concurrent LEarning (MUSCLE) to combine both unsupervised and semi-supervised learning.
MUSCLE can be used as a stand-alone training scheme for neural networks, and can also be incorporated into other learning approaches.
We show that the proposed hybrid model outperforms state of the art on several standard benchmarks, including CIFAR-10, CIFAR-100, and Mini-Imagenet.
arXiv Detail & Related papers (2020-11-30T23:01:04Z) - Self-training Improves Pre-training for Natural Language Understanding [63.78927366363178]
We study self-training as another way to leverage unlabeled data through semi-supervised learning.
We introduce SentAugment, a data augmentation method which computes task-specific query embeddings from labeled data.
Our approach leads to scalable and effective self-training with improvements of up to 2.6% on standard text classification benchmarks.
arXiv Detail & Related papers (2020-10-05T17:52:25Z) - Federated Self-Supervised Learning of Multi-Sensor Representations for
Embedded Intelligence [8.110949636804772]
Smartphones, wearables, and Internet of Things (IoT) devices produce a wealth of data that cannot be accumulated in a centralized repository for learning supervised models.
We propose a self-supervised approach termed textitscalogram-signal correspondence learning based on wavelet transform to learn useful representations from unlabeled sensor inputs.
We extensively assess the quality of learned features with our multi-view strategy on diverse public datasets, achieving strong performance in all domains.
arXiv Detail & Related papers (2020-07-25T21:59:17Z) - Don't Wait, Just Weight: Improving Unsupervised Representations by
Learning Goal-Driven Instance Weights [92.16372657233394]
Self-supervised learning techniques can boost performance by learning useful representations from unlabelled data.
We show that by learning Bayesian instance weights for the unlabelled data, we can improve the downstream classification accuracy.
Our method, BetaDataWeighter is evaluated using the popular self-supervised rotation prediction task on STL-10 and Visual Decathlon.
arXiv Detail & Related papers (2020-06-22T15:59:32Z) - Building One-Shot Semi-supervised (BOSS) Learning up to Fully Supervised
Performance [0.0]
We show the potential for building one-shot semi-supervised (BOSS) learning on Cifar-10 and SVHN.
Our method combines class prototype refining, class balancing, and self-training.
Rigorous empirical evaluations provide evidence that labeling large datasets is not necessary for training deep neural networks.
arXiv Detail & Related papers (2020-06-16T17:56:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.