論文の概要: Syn-QA2: Evaluating False Assumptions in Long-tail Questions with Synthetic QA Datasets
- arxiv url: http://arxiv.org/abs/2403.12145v1
- Date: Mon, 18 Mar 2024 18:01:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 18:31:46.217203
- Title: Syn-QA2: Evaluating False Assumptions in Long-tail Questions with Synthetic QA Datasets
- Title(参考訳): Syn-QA2:Synthetic QAデータセットを用いた長期質問における偽推定の評価
- Authors: Ashwin Daswani, Rohan Sawant, Najoung Kim,
- Abstract要約: 合成された質問応答(QA)データセットの集合であるSyn-(QA)$2$を紹介する。
先行研究の結果を反映して,QAにおける誤った仮定は困難であることが判明した。
検出タスクは、自然発生の質問よりも長い尾の質問の方が難しい。
- 参考スコア(独自算出の注目度): 7.52684798377727
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Sensitivity to false assumptions (or false premises) in information-seeking questions is critical for robust question-answering (QA) systems. Recent work has shown that false assumptions in naturally occurring questions pose challenges to current models, with low performance on both generative QA and simple detection tasks (Kim et al. 2023). However, the focus of existing work on naturally occurring questions leads to a gap in the analysis of model behavior on the long tail of the distribution of possible questions. To this end, we introduce Syn-(QA)$^2$, a set of two synthetically generated QA datasets: one generated using perturbed relations from Wikidata, and the other by perturbing HotpotQA (Yang et al. 2018). Our findings from evaluating a range of large language models are threefold: (1) false assumptions in QA are challenging, echoing the findings of prior work, (2) the binary detection task is challenging even compared to the difficulty of generative QA itself, possibly due to the linguistic structure of the problem, and (3) the detection task is more challenging with long-tail questions compared to naturally occurring questions, highlighting the utility of our synthetic datasets and generation method.
- Abstract(参考訳): 情報探索問題における虚偽の仮定(または偽の前提)に対する感度は、堅牢な質問回答システム(QA)にとって重要である。
近年の研究では、自然発生問題における誤った仮定が、生成的QAと単純な検出タスクの両方で低い性能で、現在のモデルに課題をもたらすことが示されている(Kim et al 2023)。
しかし, 自然発生型質問に対する既存の研究の焦点は, 可能な質問の分布の長い部分におけるモデル行動の分析のギャップに繋がる。
この目的のために、Syn-(QA)$^2$という合成生成された2つのQAデータセットをWikidataから摂動関係を用いて生成し、HotpotQAを摂動することで生成する(Yang et al 2018)。
大規模言語モデルの評価から得られた知見は,(1)QAにおける誤った仮定は,先行研究の成果を反映して困難である,(2)生成的QA自体の難易度よりも二項検出タスクが困難である,(3)自然発生の質問よりも長い質問の方が困難であること,(3)合成データセットや生成手法の有用性を強調している,の3つである。
関連論文リスト
- DEXTER: A Benchmark for open-domain Complex Question Answering using LLMs [3.24692739098077]
オープンドメイン複合質問回答 (QA) は証拠検索と推論において難しい課題である。
我々は、オープンドメイン設定で、最先端の訓練済み高密度・スパース検索モデルを評価する。
BM25のような遅延相互作用モデルや驚くほど語彙的モデルは、事前訓練された高密度検索モデルと比較してよく機能する。
論文 参考訳(メタデータ) (2024-06-24T22:09:50Z) - Synthetic Context Generation for Question Generation [6.226609932118123]
本稿では,大規模言語モデルによる合成文脈を用いたQGモデルの訓練について検討する。
たとえ合成されたとしても、QGタスクにはコンテキストが不可欠であることがわかった。
論文 参考訳(メタデータ) (2024-06-19T03:37:52Z) - Automatic Question-Answer Generation for Long-Tail Knowledge [65.11554185687258]
テールエンティティのための特別なQAデータセットを生成するための自動アプローチを提案する。
我々は,新たに生成された長尾QAデータセットに事前学習したLLMを用いて広範な実験を行う。
論文 参考訳(メタデータ) (2024-03-03T03:06:31Z) - QASnowball: An Iterative Bootstrapping Framework for High-Quality
Question-Answering Data Generation [67.27999343730224]
QAデータ拡張のための反復型ブートストラップフレームワーク(QASnowball)を導入する。
QASnowballは、教師付きサンプルのシードセットに基づいて、大規模で高品質なQAデータを反復的に生成することができる。
本研究では, 高資源の英語シナリオと中資源の中国語シナリオで実験を行い, 実験結果から, QASnowball が生成したデータによりQAモデルを容易に作成できることが示唆された。
論文 参考訳(メタデータ) (2023-09-19T05:20:36Z) - An Empirical Comparison of LM-based Question and Answer Generation
Methods [79.31199020420827]
質問と回答の生成(QAG)は、コンテキストが与えられた質問と回答のペアのセットを生成することで構成される。
本稿では,シーケンス・ツー・シーケンス言語モデル(LM)を微調整する3つの異なるQAG手法を用いて,ベースラインを確立する。
実験により、学習時間と推論時間の両方で計算的に軽量なエンドツーエンドQAGモデルが一般に堅牢であり、他のより複雑なアプローチよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-05-26T14:59:53Z) - Modern Question Answering Datasets and Benchmarks: A Survey [5.026863544662493]
質問回答(QA)は、自然言語処理(NLP)の最も重要なタスクの一つである。
NLP技術を用いて、大量の非構造化コーパスに基づいて、与えられた質問に対する対応する回答を生成することを目的としている。
本稿では,ディープラーニングの時代にリリースされた,影響力あるQAデータセットについて検討する。
論文 参考訳(メタデータ) (2022-06-30T05:53:56Z) - ASQA: Factoid Questions Meet Long-Form Answers [35.11889930792675]
この研究は、解釈によって異なる正しい答えを持つ、あいまいな事実型問題に焦点を当てている。
曖昧な質問に対する回答は、複数の情報源からの事実情報を長文の要約にまとめるべきである。
我々は、この正確性の概念を用いて、ASQAのパフォーマンスの自動測定基準を定義します。
論文 参考訳(メタデータ) (2022-04-12T21:58:44Z) - Improving Unsupervised Question Answering via Summarization-Informed
Question Generation [47.96911338198302]
質問生成 (QG) とは, 質問文, 質問文, 質問文, 質問文, 質問文, 質問文, 質問文, 質問文, 質問文, 質問文, 質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、
我々は、自由なニュース要約データを使用し、宣言文を依存性解析、名前付きエンティティ認識、セマンティックロールラベリングを用いて適切な質問に変換する。
得られた質問は、元のニュース記事と組み合わせて、エンドツーエンドのニューラルQGモデルをトレーニングする。
論文 参考訳(メタデータ) (2021-09-16T13:08:43Z) - Understanding Unnatural Questions Improves Reasoning over Text [54.235828149899625]
生テキストに対する複雑な質問応答(CQA)は難しい課題である。
効果的なCQAモデルを学ぶには、大量の人間が注釈付けしたデータが必要である。
我々は、自然の人間生成の質問を非自然の機械生成の質問に投影することで、高品質なプログラマ(パーザ)を学ぶという課題に対処する。
論文 参考訳(メタデータ) (2020-10-19T10:22:16Z) - Generating Diverse and Consistent QA pairs from Contexts with
Information-Maximizing Hierarchical Conditional VAEs [62.71505254770827]
非構造化テキストを文脈として与えられたQAペアを生成するための条件付き変分オートエンコーダ(HCVAE)を提案する。
我々のモデルは、トレーニングにわずかなデータしか使わず、両方のタスクの全てのベースラインに対して印象的なパフォーマンス向上が得られる。
論文 参考訳(メタデータ) (2020-05-28T08:26:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。