Intelligent Execution through Plan Analysis
- URL: http://arxiv.org/abs/2403.12162v1
- Date: Mon, 18 Mar 2024 18:23:36 GMT
- Title: Intelligent Execution through Plan Analysis
- Authors: Daniel Borrajo, Manuela Veloso,
- Abstract summary: Planning makes assumptions about the world.
When executing plans, the assumptions are usually not met.
Instead, we focus on the positive impact, or opportunities to find better plans.
Experiments in several paradigmatic robotic tasks show how the approach outperforms standard replanning strategies.
- Score: 11.771743106780102
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intelligent robots need to generate and execute plans. In order to deal with the complexity of real environments, planning makes some assumptions about the world. When executing plans, the assumptions are usually not met. Most works have focused on the negative impact of this fact and the use of replanning after execution failures. Instead, we focus on the positive impact, or opportunities to find better plans. When planning, the proposed technique finds and stores those opportunities. Later, during execution, the monitoring system can use them to focus perception and repair the plan, instead of replanning from scratch. Experiments in several paradigmatic robotic tasks show how the approach outperforms standard replanning strategies.
Related papers
- TravelPlanner: A Benchmark for Real-World Planning with Language Agents [63.199454024966506]
We propose TravelPlanner, a new planning benchmark that focuses on travel planning, a common real-world planning scenario.
It provides a rich sandbox environment, various tools for accessing nearly four million data records, and 1,225 meticulously curated planning intents and reference plans.
Comprehensive evaluations show that the current language agents are not yet capable of handling such complex planning tasks-even GPT-4 only achieves a success rate of 0.6%.
arXiv Detail & Related papers (2024-02-02T18:39:51Z) - LLM-Assist: Enhancing Closed-Loop Planning with Language-Based Reasoning [65.86754998249224]
We develop a novel hybrid planner that leverages a conventional rule-based planner in conjunction with an LLM-based planner.
Our approach navigates complex scenarios which existing planners struggle with, produces well-reasoned outputs while also remaining grounded through working alongside the rule-based approach.
arXiv Detail & Related papers (2023-12-30T02:53:45Z) - Planning as In-Painting: A Diffusion-Based Embodied Task Planning
Framework for Environments under Uncertainty [56.30846158280031]
Task planning for embodied AI has been one of the most challenging problems.
We propose a task-agnostic method named 'planning as in-painting'
The proposed framework achieves promising performances in various embodied AI tasks.
arXiv Detail & Related papers (2023-12-02T10:07:17Z) - AdaPlanner: Adaptive Planning from Feedback with Language Models [56.367020818139665]
Large language models (LLMs) have recently demonstrated the potential in acting as autonomous agents for sequential decision-making tasks.
We propose a closed-loop approach, AdaPlanner, which allows the LLM agent to refine its self-generated plan adaptively in response to environmental feedback.
To mitigate hallucination, we develop a code-style LLM prompt structure that facilitates plan generation across a variety of tasks, environments, and agent capabilities.
arXiv Detail & Related papers (2023-05-26T05:52:27Z) - Multimodal Contextualized Plan Prediction for Embodied Task Completion [9.659463406886301]
Task planning is an important component of traditional robotics systems enabling robots to compose fine grained skills to perform more complex tasks.
Recent work building systems for translating natural language to executable actions for task completion in simulated embodied agents is focused on directly predicting low level action sequences.
We focus on predicting a higher level plan representation for one such embodied task completion dataset - TEACh.
arXiv Detail & Related papers (2023-05-10T22:29:12Z) - A Framework for Neurosymbolic Robot Action Planning using Large Language Models [3.0501524254444767]
We present a framework aimed at bridging the gap between symbolic task planning and machine learning approaches.
The rationale is training Large Language Models (LLMs) into a neurosymbolic task planner compatible with the Planning Domain Definition Language (PDDL)
Preliminary results in selected domains show that our method can: (i) solve 95.5% of problems in a test data set of 1,000 samples; (ii) produce plans up to 13.5% shorter than a traditional symbolic planner; (iii) reduce average overall waiting times for a plan availability by up to 61.4%.
arXiv Detail & Related papers (2023-03-01T11:54:22Z) - Achieving mouse-level strategic evasion performance using real-time
computational planning [59.60094442546867]
Planning is an extraordinary ability in which the brain imagines and then enacts evaluated possible futures.
We develop a more efficient biologically-inspired planning algorithm, TLPPO, based on work on how the ecology of an animal governs the value of spatial planning.
We compare the performance of a real-time agent using TLPPO against the performance of live mice, all tasked with evading a robot predator.
arXiv Detail & Related papers (2022-11-04T18:34:36Z) - Long-Horizon Planning and Execution with Functional Object-Oriented
Networks [79.94575713911189]
We introduce the idea of exploiting object-level knowledge as a FOON for task planning and execution.
Our approach automatically transforms FOON into PDDL and leverages off-the-shelf planners, action contexts, and robot skills.
We demonstrate our approach on long-horizon tasks in CoppeliaSim and show how learned action contexts can be extended to never-before-seen scenarios.
arXiv Detail & Related papers (2022-07-12T19:29:35Z) - Active Learning of Abstract Plan Feasibility [17.689758291966502]
We present an active learning approach to efficiently acquire an APF predictor through task-independent, curious exploration on a robot.
We leverage an infeasible subsequence property to prune candidate plans in the active learning strategy, allowing our system to learn from less data.
In a stacking domain where objects have non-uniform mass distributions, we show that our system permits real robot learning of an APF model in four hundred self-supervised interactions.
arXiv Detail & Related papers (2021-07-01T18:17:01Z) - Planning with Learned Object Importance in Large Problem Instances using
Graph Neural Networks [28.488201307961624]
Real-world planning problems often involve hundreds or even thousands of objects.
We propose a graph neural network architecture for predicting object importance in a single inference pass.
Our approach treats the planner and transition model as black boxes, and can be used with any off-the-shelf planner.
arXiv Detail & Related papers (2020-09-11T18:55:08Z) - The Efficiency of Human Cognition Reflects Planned Information
Processing [40.51474966524166]
We make predictions about how people should plan and meta-plan as a function of the overall structure of a task.
We find that people's reaction times reflect a planned use of information processing.
This formulation of planning to plan provides new insight into the function of hierarchical planning, state abstraction, and cognitive control in both humans and machines.
arXiv Detail & Related papers (2020-02-13T20:34:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.