論文の概要: Large-scale flood modeling and forecasting with FloodCast
- arxiv url: http://arxiv.org/abs/2403.12226v1
- Date: Mon, 18 Mar 2024 20:18:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 18:12:11.315275
- Title: Large-scale flood modeling and forecasting with FloodCast
- Title(参考訳): FloodCastを用いた大規模洪水モデリングと予測
- Authors: Qingsong Xu, Yilei Shi, Jonathan Bamber, Chaojun Ouyang, Xiao Xiang Zhu,
- Abstract要約: 高速で、安定し、正確で、解像度不変であり、幾何適応的な洪水モデリングと予測フレームワークを構築します。
このフレームワークは、マルチ衛星観測と流体力学モデリングの2つの主要なモジュールから構成されている。
流体力学モデリングモジュールでは、幾何適応型物理インフォームドニューラルソルバ(GeoPINS)が導入された。
大規模洪水モデルにおいて,GeoPINS を用いた長期時間系列と広域空間領域を扱うためのシーケンス・ツー・シーケンスのGeoPINS モデルを提案する。
- 参考スコア(独自算出の注目度): 22.09906304112966
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large-scale hydrodynamic models generally rely on fixed-resolution spatial grids and model parameters as well as incurring a high computational cost. This limits their ability to accurately forecast flood crests and issue time-critical hazard warnings. In this work, we build a fast, stable, accurate, resolution-invariant, and geometry-adaptative flood modeling and forecasting framework that can perform at large scales, namely FloodCast. The framework comprises two main modules: multi-satellite observation and hydrodynamic modeling. In the multi-satellite observation module, a real-time unsupervised change detection method and a rainfall processing and analysis tool are proposed to harness the full potential of multi-satellite observations in large-scale flood prediction. In the hydrodynamic modeling module, a geometry-adaptive physics-informed neural solver (GeoPINS) is introduced, benefiting from the absence of a requirement for training data in physics-informed neural networks and featuring a fast, accurate, and resolution-invariant architecture with Fourier neural operators. GeoPINS demonstrates impressive performance on popular PDEs across regular and irregular domains. Building upon GeoPINS, we propose a sequence-to-sequence GeoPINS model to handle long-term temporal series and extensive spatial domains in large-scale flood modeling. Next, we establish a benchmark dataset in the 2022 Pakistan flood to assess various flood prediction methods. Finally, we validate the model in three dimensions - flood inundation range, depth, and transferability of spatiotemporal downscaling. Traditional hydrodynamics and sequence-to-sequence GeoPINS exhibit exceptional agreement during high water levels, while comparative assessments with SAR-based flood depth data show that sequence-to-sequence GeoPINS outperforms traditional hydrodynamics, with smaller prediction errors.
- Abstract(参考訳): 大規模流体力学モデルは通常、高い計算コストをもたらすだけでなく、固定解像度の空間格子とモデルパラメータに依存する。
これにより、洪水の隆起を正確に予測し、時限危険警報を発する能力が制限される。
本研究では,FloodCastという大規模に動作可能な高速で安定,高精度,解像度不変,幾何適応的な洪水モデリングおよび予測フレームワークを構築した。
このフレームワークは、マルチ衛星観測と流体力学モデリングの2つの主要なモジュールから構成されている。
マルチ衛星観測モジュールでは,大規模洪水予測におけるマルチ衛星観測の可能性をフル活用するために,リアルタイムな教師なし変化検出法と降雨処理・解析ツールが提案されている。
流体力学モデリングモジュールでは、物理インフォームドニューラルネットワークにおけるデータトレーニングの要件がなく、フーリエニューラル演算子による高速で正確で解像度不変のアーキテクチャを特徴とする幾何適応型物理インフォームドニューラルソルバ(GeoPINS)が導入された。
GeoPINSは、一般的なPDEにおいて、正規および不規則なドメインにまたがる印象的なパフォーマンスを示す。
大規模洪水モデルにおいて,GeoPINS を用いた長期時間系列と広域空間領域を扱うためのシーケンス・ツー・シーケンスのGeoPINS モデルを提案する。
次に,2022年パキスタン洪水における様々な洪水予測手法を評価するために,ベンチマークデータセットを構築した。
最後に, 時空間下降時の浸水範囲, 深さ, 移動可能性の3次元的検証を行った。
従来の流体力学とシークエンス・ツー・シークエンス(Sequence-to-Sequence)のGeoPINSは、SARに基づく洪水深度データと比較すると、シークエンス・ツー・シークエンス・ジオPINSは予測誤差が小さく、従来の流体力学よりも優れていた。
関連論文リスト
- GeoFUSE: A High-Efficiency Surrogate Model for Seawater Intrusion Prediction and Uncertainty Reduction [0.10923877073891446]
海岸帯水層への海水侵入は地下水資源に重大な脅威をもたらす。
ディープラーニングに基づく新しいサロゲートフレームワークGeoFUSEを開発した。
ワシントン州のビーバークリーク潮流-河床平原系の2次元断面にGeoFUSEを適用した。
論文 参考訳(メタデータ) (2024-10-26T08:10:32Z) - Deep Vision-Based Framework for Coastal Flood Prediction Under Climate Change Impacts and Shoreline Adaptations [0.3413711585591077]
低データ環境下での高忠実度ディープビジョンに基づく沿岸洪水予測モデルを訓練するための体系的枠組みを提案する。
また,沿岸の洪水予測問題に特化して,CNNの深部構造を導入している。
開発したDLモデルの性能は、一般に採用されている測地回帰法に対して検証される。
論文 参考訳(メタデータ) (2024-06-06T19:54:34Z) - Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
本稿では,天気予報をより微細なテンポラルスケールに一般化する物理AIハイブリッドモデル(WeatherGFT)を提案する。
具体的には、小さな時間スケールで物理進化をシミュレートするために、慎重に設計されたPDEカーネルを用いる。
我々は、異なるリードタイムでのモデルの一般化を促進するためのリードタイムアウェアトレーニングフレームワークを導入する。
論文 参考訳(メタデータ) (2024-05-22T16:21:02Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
本研究では,空間的不一致に対するレジリエンスを示す頑健な降水予測モデルを構築した。
提案手法は,textit4cast'23コンペティションの移行学習リーダーボードにおいて,textit1位を確保したモデルにおいて,予測精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-11-30T08:22:08Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - Rapid Flood Inundation Forecast Using Fourier Neural Operator [77.30160833875513]
洪水浸水予測は洪水前後の緊急計画に重要な情報を提供する。
近年,高分解能な流体力学モデリングが普及しつつあるが,道路の洪水範囲やリアルタイムのビルディングレベルは依然として計算的に要求されている。
洪水範囲と浸水深度予測のためのハイブリッドプロセスベースおよびデータ駆動機械学習(ML)アプローチを提案する。
論文 参考訳(メタデータ) (2023-07-29T22:49:50Z) - Deep Learning Hydrodynamic Forecasting for Flooded Region Assessment in
Near-Real-Time (DL Hydro-FRAN) [1.7942265700058984]
本研究では,複数のディープニューラルネットワーク(DNN)アーキテクチャが流体流動モデルの最適化に適しているかを検討する。
2次元HEC-RAS流体力学モデルを用いて, 低解像度の都市環境下で数回の急激な洪水現象をシミュレーションした。
以上の結果から,DNNは洪水モデルを大幅に最適化し,ほぼリアルタイムに洪水を予測できることが示唆された。
論文 参考訳(メタデータ) (2023-05-20T01:06:50Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
高空間分解能水深予測のための異なる深層学習モデルの比較を行った。
深層学習モデルはCADDIESセル-オートマタフラッドモデルによってシミュレーションされたデータを再現するために訓練される。
その結果,ディープラーニングモデルでは,他の手法に比べて誤差が低いことがわかった。
論文 参考訳(メタデータ) (2023-02-20T16:08:54Z) - MAgNet: Mesh Agnostic Neural PDE Solver [68.8204255655161]
気候予測は、流体シミュレーションにおける全ての乱流スケールを解決するために、微細な時間分解能を必要とする。
現在の数値モデル解法 PDEs on grids that too coarse (3km~200km on each side)
本研究では,空間的位置問合せが与えられたPDEの空間的連続解を予測する新しいアーキテクチャを設計する。
論文 参考訳(メタデータ) (2022-10-11T14:52:20Z) - Multioutput Gaussian Processes with Functional Data: A Study on Coastal
Flood Hazard Assessment [0.0]
我々は,時変入力を考慮した代理モデルを導入し,空間的に変化する内陸浸水に関する情報を提供する。
いくつかの実験では、学習マップと観測されていないマップの推論の両方において、モデルの汎用性を示す。
我々のフレームワークは予測と早期警告システムにとって有望なアプローチであると結論付けている。
論文 参考訳(メタデータ) (2020-07-28T08:15:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。