論文の概要: Deep Vision-Based Framework for Coastal Flood Prediction Under Climate Change Impacts and Shoreline Adaptations
- arxiv url: http://arxiv.org/abs/2406.15451v1
- Date: Thu, 6 Jun 2024 19:54:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 07:01:19.487812
- Title: Deep Vision-Based Framework for Coastal Flood Prediction Under Climate Change Impacts and Shoreline Adaptations
- Title(参考訳): 気候変動の影響とショアライン適応下における沿岸洪水予測のための深い視線に基づく枠組み
- Authors: Areg Karapetyan, Aaron Chung Hin Chow, Samer Madanat,
- Abstract要約: 低データ環境下での高忠実度ディープビジョンに基づく沿岸洪水予測モデルを訓練するための体系的枠組みを提案する。
また,沿岸の洪水予測問題に特化して,CNNの深部構造を導入している。
開発したDLモデルの性能は、一般に採用されている測地回帰法に対して検証される。
- 参考スコア(独自算出の注目度): 0.3413711585591077
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In light of growing threats posed by climate change in general and sea level rise (SLR) in particular, the necessity for computationally efficient means to estimate and analyze potential coastal flood hazards has become increasingly pressing. Data-driven supervised learning methods serve as promising candidates that can dramatically expedite the process, thereby eliminating the computational bottleneck associated with traditional physics-based hydrodynamic simulators. Yet, the development of accurate and reliable coastal flood prediction models, especially those based on Deep Learning (DL) techniques, has been plagued with two major issues: (1) the scarcity of training data and (2) the high-dimensional output required for detailed inundation mapping. To remove this barrier, we present a systematic framework for training high-fidelity Deep Vision-based coastal flood prediction models in low-data settings. We test the proposed workflow on different existing vision models, including a fully transformer-based architecture and a Convolutional Neural Network (CNN) with additive attention gates. Additionally, we introduce a deep CNN architecture tailored specifically to the coastal flood prediction problem at hand. The model was designed with a particular focus on its compactness so as to cater to resource-constrained scenarios and accessibility aspects. The performance of the developed DL models is validated against commonly adopted geostatistical regression methods and traditional Machine Learning (ML) approaches, demonstrating substantial improvement in prediction quality. Lastly, we round up the contributions by providing a meticulously curated dataset of synthetic flood inundation maps of Abu Dhabi's coast produced with a physics-based hydrodynamic simulator, which can serve as a benchmark for evaluating future coastal flood prediction models.
- Abstract(参考訳): 気候変動による脅威の増大、特に海面上昇(SLR)を踏まえ、計算的に効率的な手段の必要性は、潜在的沿岸洪水の危険性を推定し分析する必要性が高まっている。
データ駆動型教師あり学習法は、プロセスを大幅に高速化できる有望な候補として機能し、従来の物理ベースの流体力学シミュレータに関連する計算ボトルネックを解消する。
しかし, 高精度で信頼性の高い沿岸洪水予測モデル, 特に深層学習(DL)技術に基づくモデルの開発は, 1) 訓練データの不足, (2) 詳細な浸水マッピングに必要な高次元出力の2つの大きな問題に悩まされている。
この障壁を取り除くために,我々は高忠実度ディープビジョンに基づく沿岸洪水予測モデルを低データ設定でトレーニングするための体系的な枠組みを提案する。
提案したワークフローは、完全にトランスフォーマーベースのアーキテクチャと追加の注意ゲートを備えた畳み込みニューラルネットワーク(CNN)を含む、さまざまな既存の視覚モデル上でテストする。
さらに,沿岸域の洪水予測問題に特化して,深層CNNアーキテクチャを導入する。
このモデルは、リソース制約のあるシナリオとアクセシビリティの側面に対応するために、そのコンパクト性に特化して設計された。
開発したDLモデルの性能は、一般的に採用されている測地回帰法や従来の機械学習(ML)アプローチに対して検証され、予測品質が大幅に向上した。
最後に,Abu Dhabi 沿岸の人工浸水分布図を物理に基づく流体力学シミュレータで作成し,将来的な沿岸浸水予測モデルを評価するためのベンチマークとして有効であることを示す。
関連論文リスト
- Evaluation of deep learning models for Australian climate extremes: prediction of streamflow and floods [0.17999333451993949]
近年、洪水のような気候の極端は、オーストラリアにとって重要な環境と経済の危険を生み出している。
ディープラーニングの手法は、短時間の地平線上で、小規模から中規模の極端な事象を予測することを約束している。
大規模な急激な洪水に対処するアンサンブルベースの機械学習アプローチを提案する。
論文 参考訳(メタデータ) (2024-07-20T23:45:04Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - Outlier detection in maritime environments using AIS data and deep recurrent architectures [5.399126243770847]
本稿では,海上監視のための深部再帰モデルに基づく手法を,公開可能な自動識別システム(AIS)データ上で提案する。
このセットアップはディープ・リカレント・ニューラルネットワーク(RNN)ベースのモデルを使用して、観測された船の動きパターンを符号化し、再構築する。
提案手法は,観測された動作パターンと再構成された動作パターンの計算誤差に対するしきい値決定機構に基づく。
論文 参考訳(メタデータ) (2024-06-14T12:15:15Z) - Graph neural network-based surrogate modelling for real-time hydraulic prediction of urban drainage networks [1.8073031015436376]
物理モデルに基づくモデルは、計算に時間がかかり、都市排水網のリアルタイムシナリオには有効ではない。
完全に接続されたニューラルネットワーク(NN)は、潜在的な代理モデルであるが、複雑なターゲットに適合する際の解釈可能性と効率の低下に悩まされる可能性がある。
本研究は, 排水網の水理予測問題に対する流路モデルのGNNに基づくサロゲートを提案する。
論文 参考訳(メタデータ) (2024-04-16T07:08:04Z) - Large-scale flood modeling and forecasting with FloodCast [22.09906304112966]
高速で、安定し、正確で、解像度不変であり、幾何適応的な洪水モデリングと予測フレームワークを構築します。
このフレームワークは、マルチ衛星観測と流体力学モデリングの2つの主要なモジュールから構成されている。
流体力学モデリングモジュールでは、幾何適応型物理インフォームドニューラルソルバ(GeoPINS)が導入された。
大規模洪水モデルにおいて,GeoPINS を用いた長期時間系列と広域空間領域を扱うためのシーケンス・ツー・シーケンスのGeoPINS モデルを提案する。
論文 参考訳(メタデータ) (2024-03-18T20:18:32Z) - Graph Neural Networks for Pressure Estimation in Water Distribution
Systems [44.99833362998488]
水分配ネットワーク(WDN)における圧力と流量の推定により、水管理会社は制御操作を最適化できる。
物理に基づくモデリングとデータ駆動型アプローチであるグラフニューラルネットワーク(GNN)を組み合わせて,圧力推定問題に対処する。
我々のGNNモデルでは、オランダの大規模WDNの圧力は1.94mH$O、MAPEは7%と見積もられている。
論文 参考訳(メタデータ) (2023-11-17T15:30:12Z) - FLODCAST: Flow and Depth Forecasting via Multimodal Recurrent
Architectures [31.879514593973195]
本研究では,両モードを同時に予測するフローおよび深さ予測モデルを提案する。
提案したモデルをトレーニングし、将来いくつかのタイムステップの予測を行う。
セグメンテーション予測の下流タスクの利点を報告し、フローベースのマスクウォーピングフレームワークに予測を注入する。
論文 参考訳(メタデータ) (2023-10-31T16:30:16Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - Rapid Flood Inundation Forecast Using Fourier Neural Operator [77.30160833875513]
洪水浸水予測は洪水前後の緊急計画に重要な情報を提供する。
近年,高分解能な流体力学モデリングが普及しつつあるが,道路の洪水範囲やリアルタイムのビルディングレベルは依然として計算的に要求されている。
洪水範囲と浸水深度予測のためのハイブリッドプロセスベースおよびデータ駆動機械学習(ML)アプローチを提案する。
論文 参考訳(メタデータ) (2023-07-29T22:49:50Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
高空間分解能水深予測のための異なる深層学習モデルの比較を行った。
深層学習モデルはCADDIESセル-オートマタフラッドモデルによってシミュレーションされたデータを再現するために訓練される。
その結果,ディープラーニングモデルでは,他の手法に比べて誤差が低いことがわかった。
論文 参考訳(メタデータ) (2023-02-20T16:08:54Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。