Efficient Transformer-based Hyper-parameter Optimization for Resource-constrained IoT Environments
- URL: http://arxiv.org/abs/2403.12237v2
- Date: Wed, 1 May 2024 21:39:21 GMT
- Title: Efficient Transformer-based Hyper-parameter Optimization for Resource-constrained IoT Environments
- Authors: Ibrahim Shaer, Soodeh Nikan, Abdallah Shami,
- Abstract summary: We propose a novel approach that combines transformer architecture and actor-critic Reinforcement Learning model, TRL-HPO.
The results show that TRL-HPO outperforms the classification results of these approaches by 6.8% within the same time frame.
This paper identifies new avenues for improving RL-based HPO processes in resource-constrained environments.
- Score: 9.72257571115249
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The hyper-parameter optimization (HPO) process is imperative for finding the best-performing Convolutional Neural Networks (CNNs). The automation process of HPO is characterized by its sizable computational footprint and its lack of transparency; both important factors in a resource-constrained Internet of Things (IoT) environment. In this paper, we address these problems by proposing a novel approach that combines transformer architecture and actor-critic Reinforcement Learning (RL) model, TRL-HPO, equipped with multi-headed attention that enables parallelization and progressive generation of layers. These assumptions are founded empirically by evaluating TRL-HPO on the MNIST dataset and comparing it with state-of-the-art approaches that build CNN models from scratch. The results show that TRL-HPO outperforms the classification results of these approaches by 6.8% within the same time frame, demonstrating the efficiency of TRL-HPO for the HPO process. The analysis of the results identifies the main culprit for performance degradation attributed to stacking fully connected layers. This paper identifies new avenues for improving RL-based HPO processes in resource-constrained environments.
Related papers
- Hierarchical Preference Optimization: Learning to achieve goals via feasible subgoals prediction [71.81851971324187]
This work introduces Hierarchical Preference Optimization (HPO), a novel approach to hierarchical reinforcement learning (HRL)
HPO addresses non-stationarity and infeasible subgoal generation issues when solving complex robotic control tasks.
Experiments on challenging robotic navigation and manipulation tasks demonstrate impressive performance of HPO, where it shows an improvement of up to 35% over the baselines.
arXiv Detail & Related papers (2024-11-01T04:58:40Z) - VinePPO: Unlocking RL Potential For LLM Reasoning Through Refined Credit Assignment [66.80143024475635]
We propose VinePPO, a straightforward approach to compute unbiased Monte Carlo-based estimates.
We show that VinePPO consistently outperforms PPO and other RL-free baselines across MATH and GSM8K datasets.
arXiv Detail & Related papers (2024-10-02T15:49:30Z) - ARLBench: Flexible and Efficient Benchmarking for Hyperparameter Optimization in Reinforcement Learning [42.33815055388433]
ARLBench is a benchmark for hyperparameter optimization (HPO) in reinforcement learning (RL)
It allows comparisons of diverse HPO approaches while being highly efficient in evaluation.
ARLBench is an efficient, flexible, and future-oriented foundation for research on AutoRL.
arXiv Detail & Related papers (2024-09-27T15:22:28Z) - Enhancing Sample Efficiency and Exploration in Reinforcement Learning through the Integration of Diffusion Models and Proximal Policy Optimization [1.631115063641726]
We propose a framework that enhances PPO algorithms by incorporating a diffusion model to generate high-quality virtual trajectories for offline datasets.
Our contributions are threefold: we explore the potential of diffusion models in RL, particularly for offline datasets, extend the application of online RL to offline environments, and experimentally validate the performance improvements of PPO with diffusion models.
arXiv Detail & Related papers (2024-09-02T19:10:32Z) - REBEL: Reinforcement Learning via Regressing Relative Rewards [59.68420022466047]
We propose REBEL, a minimalist RL algorithm for the era of generative models.
In theory, we prove that fundamental RL algorithms like Natural Policy Gradient can be seen as variants of REBEL.
We find that REBEL provides a unified approach to language modeling and image generation with stronger or similar performance as PPO and DPO.
arXiv Detail & Related papers (2024-04-25T17:20:45Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
This article addresses the pump-scheduling optimization problem to enhance real-time control of real-world water distribution networks (WDNs)
Our primary objectives are to adhere to physical operational constraints while reducing energy consumption and operational costs.
Traditional optimization techniques, such as evolution-based and genetic algorithms, often fall short due to their lack of convergence guarantees.
arXiv Detail & Related papers (2023-10-13T21:26:16Z) - Hyperparameters in Reinforcement Learning and How To Tune Them [25.782420501870295]
We show that hyper parameter choices in deep reinforcement learning can significantly affect the agent's final performance and sample efficiency.
We propose adopting established best practices from AutoML, such as the separation of tuning and testing seeds.
We support this by comparing state-of-the-art HPO tools on a range of RL algorithms and environments to their hand-tuned counterparts.
arXiv Detail & Related papers (2023-06-02T07:48:18Z) - Two-step hyperparameter optimization method: Accelerating hyperparameter
search by using a fraction of a training dataset [0.15420205433587747]
We present a two-step HPO method as a strategic solution to curbing computational demands and wait times.
We present our recent application of the two-step HPO method to the development of neural network emulators for aerosol activation.
arXiv Detail & Related papers (2023-02-08T02:38:26Z) - Sample-Efficient Automated Deep Reinforcement Learning [33.53903358611521]
We propose a population-based automated RL framework to meta-optimize arbitrary off-policy RL algorithms.
By sharing the collected experience across the population, we substantially increase the sample efficiency of the meta-optimization.
We demonstrate the capabilities of our sample-efficient AutoRL approach in a case study with the popular TD3 algorithm in the MuJoCo benchmark suite.
arXiv Detail & Related papers (2020-09-03T10:04:06Z) - HiPPO: Recurrent Memory with Optimal Polynomial Projections [93.3537706398653]
We introduce a general framework (HiPPO) for the online compression of continuous signals and discrete time series by projection onto bases.
Given a measure that specifies the importance of each time step in the past, HiPPO produces an optimal solution to a natural online function approximation problem.
This formal framework yields a new memory update mechanism (HiPPO-LegS) that scales through time to remember all history, avoiding priors on the timescale.
arXiv Detail & Related papers (2020-08-17T23:39:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.