Adaptive LPD Radar Waveform Design with Generative Deep Learning
- URL: http://arxiv.org/abs/2403.12254v1
- Date: Mon, 18 Mar 2024 21:07:57 GMT
- Title: Adaptive LPD Radar Waveform Design with Generative Deep Learning
- Authors: Matthew R. Ziemann, Christopher A. Metzler,
- Abstract summary: We propose a novel, learning-based method for adaptively generating low probability of detection radar waveforms.
Our method can generate LPD waveforms that reduce detectability by up to 90% while simultaneously offering improved ambiguity function (sensing) characteristics.
- Score: 6.21540494241516
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel, learning-based method for adaptively generating low probability of detection (LPD) radar waveforms that blend into their operating environment. Our waveforms are designed to follow a distribution that is indistinguishable from the ambient radio frequency (RF) background -- while still being effective at ranging and sensing. To do so, we use an unsupervised, adversarial learning framework; our generator network produces waveforms designed to confuse a critic network, which is optimized to differentiate generated waveforms from the background. To ensure our generated waveforms are still effective for sensing, we introduce and minimize an ambiguity function-based loss on the generated waveforms. We evaluate the performance of our method by comparing the single-pulse detectability of our generated waveforms with traditional LPD waveforms using a separately trained detection neural network. We find that our method can generate LPD waveforms that reduce detectability by up to 90% while simultaneously offering improved ambiguity function (sensing) characteristics. Our framework also provides a mechanism to trade-off detectability and sensing performance.
Related papers
- WiNet: Wavelet-based Incremental Learning for Efficient Medical Image Registration [68.25711405944239]
Deep image registration has demonstrated exceptional accuracy and fast inference.
Recent advances have adopted either multiple cascades or pyramid architectures to estimate dense deformation fields in a coarse-to-fine manner.
We introduce a model-driven WiNet that incrementally estimates scale-wise wavelet coefficients for the displacement/velocity field across various scales.
arXiv Detail & Related papers (2024-07-18T11:51:01Z) - Waveform Manipulation Against DNN-based Modulation Classification Attacks [2.8475397246467575]
We propose a method for defending against an eavesdropper that uses a Deep Neural Network (DNN) for learning the modulation of wireless communication signals.
Our method is based on manipulating the emitted waveform with the aid of a continuous time frequency-modulated (FM) obfuscating signal that is mixed with the modulated data.
The results indicate that careful selection of the parameters of the obfuscating waveform can drop classification performance at the eavesdropper to less than 10% in AWGN and fading channels with no performance loss at the LRx.
arXiv Detail & Related papers (2023-10-03T09:03:34Z) - Semantic Segmentation of Radar Detections using Convolutions on Point
Clouds [59.45414406974091]
We introduce a deep-learning based method to convolve radar detections into point clouds.
We adapt this algorithm to radar-specific properties through distance-dependent clustering and pre-processing of input point clouds.
Our network outperforms state-of-the-art approaches that are based on PointNet++ on the task of semantic segmentation of radar point clouds.
arXiv Detail & Related papers (2023-05-22T07:09:35Z) - Synthetic Wave-Geometric Impulse Responses for Improved Speech
Dereverberation [69.1351513309953]
We show that accurately simulating the low-frequency components of Room Impulse Responses (RIRs) is important to achieving good dereverberation.
We demonstrate that speech dereverberation models trained on hybrid synthetic RIRs outperform models trained on RIRs generated by prior geometric ray tracing methods.
arXiv Detail & Related papers (2022-12-10T20:15:23Z) - Online Learning-based Waveform Selection for Improved Vehicle
Recognition in Automotive Radar [8.113163502779175]
This paper describes important considerations and challenges associated with online reinforcement-learning based waveform selection.
We present a novel learning approach based on satisficing Thompson sampling, which quickly identifies a waveform expected to yield satisfactory classification performance.
arXiv Detail & Related papers (2022-12-01T16:10:30Z) - SpecGrad: Diffusion Probabilistic Model based Neural Vocoder with
Adaptive Noise Spectral Shaping [51.698273019061645]
SpecGrad adapts the diffusion noise so that its time-varying spectral envelope becomes close to the conditioning log-mel spectrogram.
It is processed in the time-frequency domain to keep the computational cost almost the same as the conventional DDPM-based neural vocoders.
arXiv Detail & Related papers (2022-03-31T02:08:27Z) - Deep Impulse Responses: Estimating and Parameterizing Filters with Deep
Networks [76.830358429947]
Impulse response estimation in high noise and in-the-wild settings is a challenging problem.
We propose a novel framework for parameterizing and estimating impulse responses based on recent advances in neural representation learning.
arXiv Detail & Related papers (2022-02-07T18:57:23Z) - Low-Interception Waveform: To Prevent the Recognition of Spectrum
Waveform Modulation via Adversarial Examples [6.378498479725599]
We propose a low-intercept waveform(LIW) generation method that can reduce the probability of the modulation being recognized by a third party without affecting the reliable communication of the friendly party.
Our LIW exhibits significant low-interception performance even in the physical hardware experiment, decreasing the accuracy of the state of the art model to approximately $15%$ with small perturbations.
arXiv Detail & Related papers (2022-01-20T08:13:04Z) - Waveform Selection for Radar Tracking in Target Channels With Memory via
Universal Learning [14.796960833031724]
Adapting the radar's waveform using partial information about the state of the scene has been shown to provide performance benefits in many practical scenarios.
This work examines a radar system which builds a compressed model of the radar-environment interface in the form of a context-tree.
The proposed approach is tested in a simulation study, and is shown to provide tracking performance improvements over two state-of-the-art waveform selection schemes.
arXiv Detail & Related papers (2021-08-02T21:27:56Z) - Real-time gravitational-wave science with neural posterior estimation [64.67121167063696]
We demonstrate unprecedented accuracy for rapid gravitational-wave parameter estimation with deep learning.
We analyze eight gravitational-wave events from the first LIGO-Virgo Gravitational-Wave Transient Catalog.
We find very close quantitative agreement with standard inference codes, but with inference times reduced from O(day) to a minute per event.
arXiv Detail & Related papers (2021-06-23T18:00:05Z) - Constrained Contextual Bandit Learning for Adaptive Radar Waveform
Selection [14.796960833031724]
A sequential decision process in which an adaptive radar system repeatedly interacts with a finite-state target channel is studied.
The radar is capable of passively sensing the spectrum at regular intervals, which provides side information for the waveform selection process.
It is shown that the waveform selection problem can be effectively addressed using a linear contextual bandit formulation.
arXiv Detail & Related papers (2021-03-09T16:43:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.