論文の概要: Gradient-based Fuzzy System Optimisation via Automatic Differentiation -- FuzzyR as a Use Case
- arxiv url: http://arxiv.org/abs/2403.12308v1
- Date: Mon, 18 Mar 2024 23:18:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 17:52:34.475221
- Title: Gradient-based Fuzzy System Optimisation via Automatic Differentiation -- FuzzyR as a Use Case
- Title(参考訳): 自動微分によるファジィシステム最適化-ファジィRを事例として
- Authors: Chao Chen, Christian Wagner, Jonathan M. Garibaldi,
- Abstract要約: 我々は,ファジィシステム設計者が複雑な微分計算から自由なファジィシステム設計へ向けて,ニューラルネットワーク学習に精通する自動微分に焦点をあてる。
本稿では、ファジィ推論システムの実装が、自動微分ツールセットの強力な機能を活用するためにどのように調整できるかを示す。
- 参考スコア(独自算出の注目度): 14.211148966253438
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Since their introduction, fuzzy sets and systems have become an important area of research known for its versatility in modelling, knowledge representation and reasoning, and increasingly its potential within the context explainable AI. While the applications of fuzzy systems are diverse, there has been comparatively little advancement in their design from a machine learning perspective. In other words, while representations such as neural networks have benefited from a boom in learning capability driven by an increase in computational performance in combination with advances in their training mechanisms and available tool, in particular gradient descent, the impact on fuzzy system design has been limited. In this paper, we discuss gradient-descent-based optimisation of fuzzy systems, focussing in particular on automatic differentiation--crucial to neural network learning--with a view to free fuzzy system designers from intricate derivative computations, allowing for more focus on the functional and explainability aspects of their design. As a starting point, we present a use case in FuzzyR which demonstrates how current fuzzy inference system implementations can be adjusted to leverage powerful features of automatic differentiation tools sets, discussing its potential for the future of fuzzy system design.
- Abstract(参考訳): ファジィセットとシステムは、導入以来、モデリング、知識表現、推論における汎用性で知られる研究の重要領域となり、文脈説明可能なAIの中でその可能性が高まっている。
ファジィシステムの応用は多岐にわたるが、機械学習の観点からの設計は比較的進歩していない。
言い換えれば、ニューラルネットワークのような表現は、トレーニングメカニズムや利用可能なツール、特に勾配降下の進歩と組み合わせて、計算性能の向上によって引き起こされる学習能力のブームから恩恵を受けているが、ファジィシステム設計への影響は限られている。
本稿では,ファジィシステム設計者の複雑な微分計算から自由なファジィシステム設計へ向け,特にニューラルネットワーク学習における自動微分に焦点をあて,ファジィシステムの機能的・説明可能性面により焦点をあてる。
本稿では,ファジィ・システム設計の将来の可能性について論じ,ファジィ・システム設計における現在のファジィ推論システムの実装を,自動微分ツールセットの強力な機能を活用するためにどのように調整できるかを示すユースケースを紹介する。
関連論文リスト
- Coding schemes in neural networks learning classification tasks [52.22978725954347]
完全接続型広義ニューラルネットワーク学習タスクについて検討する。
ネットワークが強力なデータ依存機能を取得することを示す。
驚くべきことに、内部表現の性質は神経の非線形性に大きく依存する。
論文 参考訳(メタデータ) (2024-06-24T14:50:05Z) - GreenLightningAI: An Efficient AI System with Decoupled Structural and
Quantitative Knowledge [0.0]
強力な、人気のあるディープニューラルネットワークのトレーニングには、非常に高い経済的および環境的コストが伴う。
この作業は、GreenLightningAIを提案することによって、根本的に異なるアプローチを取る。
新しいAIシステムは、所定のサンプルに対してシステムサブセットを選択するために必要な情報を格納する。
我々は,AIシステムを新しいサンプルで再学習する際に,構造情報を無修正で保持できることを実験的に示す。
論文 参考訳(メタデータ) (2023-12-15T17:34:11Z) - Neural Network Pruning by Gradient Descent [7.427858344638741]
我々は,Gumbel-Softmaxテクニックを取り入れた,新しい,かつ簡単なニューラルネットワークプルーニングフレームワークを提案する。
ネットワークパラメータの0.15%しか持たないMNISTデータセット上で、高い精度を維持しながら、例外的な圧縮能力を実証する。
我々は,ディープラーニングプルーニングと解釈可能な機械学習システム構築のための,有望な新たな道を開くと信じている。
論文 参考訳(メタデータ) (2023-11-21T11:12:03Z) - The Predictive Forward-Forward Algorithm [79.07468367923619]
本稿では,ニューラルネットワークにおける信頼割当を行うための予測フォワード(PFF)アルゴリズムを提案する。
我々は,有向生成回路と表現回路を同時に同時に学習する,新しい動的リカレントニューラルネットワークを設計する。
PFFは効率よく学習し、学習信号を伝達し、フォワードパスのみでシナプスを更新する。
論文 参考訳(メタデータ) (2023-01-04T05:34:48Z) - Mechanism of feature learning in deep fully connected networks and
kernel machines that recursively learn features [15.29093374895364]
我々は,ニューラルネットワークが勾配特徴を学習するメカニズムを同定し,特徴付ける。
私たちのアンザッツは、突発的な特徴の出現や単純さのバイアスなど、さまざまな深層学習現象に光を当てています。
この特徴学習機構の有効性を実証するため,古典的非機能学習モデルにおいて特徴学習を可能にする。
論文 参考訳(メタデータ) (2022-12-28T15:50:58Z) - Inducing Gaussian Process Networks [80.40892394020797]
本稿では,特徴空間と誘導点を同時に学習するシンプルなフレームワークであるGaussian Process Network (IGN)を提案する。
特に誘導点は特徴空間で直接学習され、複雑な構造化領域のシームレスな表現を可能にする。
実世界のデータセットに対する実験結果から,IGNは最先端の手法よりも大幅に進歩していることを示す。
論文 参考訳(メタデータ) (2022-04-21T05:27:09Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
本稿では,モジュールシステムとしての自己アテンションネットワークにおける推論を分解するアーキテクチャであるNeural Interpretersを提案する。
モデルへの入力は、エンドツーエンドの学習方法で一連の関数を通してルーティングされる。
ニューラル・インタープリタは、より少ないパラメータを用いて視覚変換器と同等に動作し、サンプル効率で新しいタスクに転送可能であることを示す。
論文 参考訳(メタデータ) (2021-10-12T23:22:45Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
現代の力学系はますます非線形で複雑なものになりつつある。
予測と制御のためのコンパクトで包括的な表現でこれらのシステムをモデル化するフレームワークが必要である。
本手法は,教師付き学習手法を用いてこれらの基礎関数を学習する。
論文 参考訳(メタデータ) (2021-09-06T04:39:06Z) - Exploring Flip Flop memories and beyond: training recurrent neural
networks with key insights [0.0]
本研究では,時間処理タスク,特に3ビットフリップフロップメモリの実装について検討する。
得られたネットワークは、可視化および分析ツールの配列によって支援され、ダイナミックスを解明するために慎重に分析される。
論文 参考訳(メタデータ) (2020-10-15T16:25:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。