論文の概要: Reinforcement Learning from Delayed Observations via World Models
- arxiv url: http://arxiv.org/abs/2403.12309v2
- Date: Wed, 26 Jun 2024 02:44:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-27 18:55:03.147913
- Title: Reinforcement Learning from Delayed Observations via World Models
- Title(参考訳): 世界モデルによる遅延観測からの強化学習
- Authors: Armin Karamzade, Kyungmin Kim, Montek Kalsi, Roy Fox,
- Abstract要約: 強化学習環境では、エージェントはそれらを取るとすぐに行動の効果についてのフィードバックを受ける。
実際には、この仮定は物理的制約のために当てはまらない可能性があり、学習アルゴリズムの性能に大きな影響を及ぼす可能性がある。
本稿では、過去の観測と学習のダイナミクスを統合することに成功している世界モデルを活用して、観測遅延を処理することを提案する。
- 参考スコア(独自算出の注目度): 10.298219828693489
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In standard reinforcement learning settings, agents typically assume immediate feedback about the effects of their actions after taking them. However, in practice, this assumption may not hold true due to physical constraints and can significantly impact the performance of learning algorithms. In this paper, we address observation delays in partially observable environments. We propose leveraging world models, which have shown success in integrating past observations and learning dynamics, to handle observation delays. By reducing delayed POMDPs to delayed MDPs with world models, our methods can effectively handle partial observability, where existing approaches achieve sub-optimal performance or degrade quickly as observability decreases. Experiments suggest that one of our methods can outperform a naive model-based approach by up to 250%. Moreover, we evaluate our methods on visual delayed environments, for the first time showcasing delay-aware reinforcement learning continuous control with visual observations.
- Abstract(参考訳): 標準的な強化学習設定では、エージェントは通常、それらを取ると、アクションの効果について即時にフィードバックを受けます。
しかし、実際には、この仮定は物理的制約のために成り立たず、学習アルゴリズムの性能に大きな影響を及ぼす可能性がある。
本稿では,部分的に観測可能な環境下での観測遅延に対処する。
本稿では、過去の観測と学習のダイナミクスを統合することに成功している世界モデルを活用して、観測遅延を処理することを提案する。
遅延PMDPを世界モデルで遅延MDPに還元することにより,既存手法による観測性能の低下や,観測可能性の低下に伴い急速に劣化する部分可観測性を効果的に処理することができる。
実験の結果、我々の手法の1つは、単純モデルに基づくアプローチを最大で250%上回ることが示唆された。
さらに,本手法を視覚的遅延環境において評価し,視覚的観察による遅延認識型強化学習の連続制御を初めて示す。
関連論文リスト
- Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
そこで本研究では,機能シフトによるブラックボックスモデルの振る舞いを説明する新しい手法を提案する。
本稿では,最適輸送と共有値の概念を組み合わせた提案手法について,説明的性能推定として紹介する。
論文 参考訳(メタデータ) (2024-08-24T18:28:19Z) - STAT: Towards Generalizable Temporal Action Localization [56.634561073746056]
WTAL(Wakly-supervised temporal action Localization)は、ビデオレベルのラベルだけでアクションインスタンスを認識およびローカライズすることを目的としている。
既存の手法は、異なる分布に転送する際の重大な性能劣化に悩まされる。
本稿では,アクションローカライズ手法の一般化性向上に焦点を当てたGTALを提案する。
論文 参考訳(メタデータ) (2024-04-20T07:56:21Z) - ReCoRe: Regularized Contrastive Representation Learning of World Model [21.29132219042405]
対照的な教師なし学習と介入不変正規化器を用いて不変特徴を学習する世界モデルを提案する。
提案手法は,現状のモデルベースおよびモデルフリーのRL法より優れ,iGibsonベンチマークで評価された分布外ナビゲーションタスクを大幅に改善する。
論文 参考訳(メタデータ) (2023-12-14T15:53:07Z) - VIBR: Learning View-Invariant Value Functions for Robust Visual Control [3.2307366446033945]
VIBR (View-Invariant Bellman Residuals) は、マルチビュートレーニングと不変予測を組み合わせて、RLベースのビジュモータ制御における分配ギャップを削減する手法である。
視覚摂動の高い複雑なビジュオモータ制御環境において,VIBRは既存の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-14T14:37:34Z) - Predictive Experience Replay for Continual Visual Control and
Forecasting [62.06183102362871]
視覚力学モデリングのための新しい連続学習手法を提案し,その視覚制御と予測における有効性について検討する。
まず,タスク固有のダイナミクスをガウスの混合で学習する混合世界モデルを提案し,その上で,破滅的な忘れを克服するための新たなトレーニング戦略を提案する。
我々のモデルは,DeepMind Control と Meta-World のベンチマークにおいて,既存の連続的学習アルゴリズムと視覚的RLアルゴリズムの単純な組み合わせよりも優れている。
論文 参考訳(メタデータ) (2023-03-12T05:08:03Z) - Delayed Reinforcement Learning by Imitation [31.932677462399468]
遅延しない実演から遅延環境での動作方法を学ぶ新しいアルゴリズムを提案する。
各種タスクにおいて,DIDAは顕著なサンプル効率で高い性能が得られることを示す。
論文 参考訳(メタデータ) (2022-05-11T15:27:33Z) - Imitating, Fast and Slow: Robust learning from demonstrations via
decision-time planning [96.72185761508668]
テストタイムでの計画(IMPLANT)は、模倣学習のための新しいメタアルゴリズムである。
IMPLANTは,標準制御環境において,ベンチマーク模倣学習手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-04-07T17:16:52Z) - Imitation Learning by State-Only Distribution Matching [2.580765958706854]
観察からの模倣学習は、人間の学習と同様の方法で政策学習を記述する。
本稿では,解釈可能な収束度と性能測定値とともに,非逆学習型観測手法を提案する。
論文 参考訳(メタデータ) (2022-02-09T08:38:50Z) - Counterfactual Maximum Likelihood Estimation for Training Deep Networks [83.44219640437657]
深層学習モデルは、予測的手がかりとして学習すべきでない急激な相関を学習する傾向がある。
本研究では,観測可能な共同設立者による相関関係の緩和を目的とした因果関係に基づくトレーニングフレームワークを提案する。
自然言語推論(NLI)と画像キャプションという2つの実世界の課題について実験を行った。
論文 参考訳(メタデータ) (2021-06-07T17:47:16Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
観察ifoからの模倣学習において、学習エージェントは、実演者の生成した制御信号にアクセスせずに、実演行動の観察のみを用いて実演エージェントを模倣しようとする。
近年、逆模倣学習に基づく手法は、ifO問題に対する最先端のパフォーマンスをもたらすが、データ非効率でモデルなしの強化学習アルゴリズムに依存するため、サンプルの複雑さに悩まされることが多い。
この問題は、サンプルの収集が時間、エネルギー、およびリスクの面で高いコストを被る可能性がある現実世界の設定に展開することは非現実的です。
よりデータ効率の高いifOアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-31T23:46:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。