Reinforcement Learning from Delayed Observations via World Models
- URL: http://arxiv.org/abs/2403.12309v2
- Date: Wed, 26 Jun 2024 02:44:18 GMT
- Title: Reinforcement Learning from Delayed Observations via World Models
- Authors: Armin Karamzade, Kyungmin Kim, Montek Kalsi, Roy Fox,
- Abstract summary: In reinforcement learning settings, agents assume immediate feedback about the effects of their actions after taking them.
In practice, this assumption may not hold true due to physical constraints and can significantly impact the performance of learning algorithms.
We propose leveraging world models, which have shown success in integrating past observations and learning dynamics, to handle observation delays.
- Score: 10.298219828693489
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In standard reinforcement learning settings, agents typically assume immediate feedback about the effects of their actions after taking them. However, in practice, this assumption may not hold true due to physical constraints and can significantly impact the performance of learning algorithms. In this paper, we address observation delays in partially observable environments. We propose leveraging world models, which have shown success in integrating past observations and learning dynamics, to handle observation delays. By reducing delayed POMDPs to delayed MDPs with world models, our methods can effectively handle partial observability, where existing approaches achieve sub-optimal performance or degrade quickly as observability decreases. Experiments suggest that one of our methods can outperform a naive model-based approach by up to 250%. Moreover, we evaluate our methods on visual delayed environments, for the first time showcasing delay-aware reinforcement learning continuous control with visual observations.
Related papers
- Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
We propose a novel approach to explain the behavior of a black-box model under feature shifts.
We refer to our method that combines concepts from Optimal Transport and Shapley Values as Explanatory Performance Estimation.
arXiv Detail & Related papers (2024-08-24T18:28:19Z) - STAT: Towards Generalizable Temporal Action Localization [56.634561073746056]
Weakly-supervised temporal action localization (WTAL) aims to recognize and localize action instances with only video-level labels.
Existing methods suffer from severe performance degradation when transferring to different distributions.
We propose GTAL, which focuses on improving the generalizability of action localization methods.
arXiv Detail & Related papers (2024-04-20T07:56:21Z) - ReCoRe: Regularized Contrastive Representation Learning of World Model [21.29132219042405]
We present a world model that learns invariant features using contrastive unsupervised learning and an intervention-invariant regularizer.
Our method outperforms current state-of-the-art model-based and model-free RL methods and significantly improves on out-of-distribution point navigation tasks evaluated on the iGibson benchmark.
arXiv Detail & Related papers (2023-12-14T15:53:07Z) - VIBR: Learning View-Invariant Value Functions for Robust Visual Control [3.2307366446033945]
VIBR (View-Invariant Bellman Residuals) is a method that combines multi-view training and invariant prediction to reduce out-of-distribution gap for RL based visuomotor control.
We show that VIBR outperforms existing methods on complex visuo-motor control environment with high visual perturbation.
arXiv Detail & Related papers (2023-06-14T14:37:34Z) - Predictive Experience Replay for Continual Visual Control and
Forecasting [62.06183102362871]
We present a new continual learning approach for visual dynamics modeling and explore its efficacy in visual control and forecasting.
We first propose the mixture world model that learns task-specific dynamics priors with a mixture of Gaussians, and then introduce a new training strategy to overcome catastrophic forgetting.
Our model remarkably outperforms the naive combinations of existing continual learning and visual RL algorithms on DeepMind Control and Meta-World benchmarks with continual visual control tasks.
arXiv Detail & Related papers (2023-03-12T05:08:03Z) - Delayed Reinforcement Learning by Imitation [31.932677462399468]
We present a novel algorithm that learns how to act in a delayed environment from undelayed demonstrations.
We show that DIDA obtains high performances with a remarkable sample efficiency on a variety of tasks.
arXiv Detail & Related papers (2022-05-11T15:27:33Z) - Imitating, Fast and Slow: Robust learning from demonstrations via
decision-time planning [96.72185761508668]
Planning at Test-time (IMPLANT) is a new meta-algorithm for imitation learning.
We demonstrate that IMPLANT significantly outperforms benchmark imitation learning approaches on standard control environments.
arXiv Detail & Related papers (2022-04-07T17:16:52Z) - Imitation Learning by State-Only Distribution Matching [2.580765958706854]
Imitation Learning from observation describes policy learning in a similar way to human learning.
We propose a non-adversarial learning-from-observations approach, together with an interpretable convergence and performance metric.
arXiv Detail & Related papers (2022-02-09T08:38:50Z) - Counterfactual Maximum Likelihood Estimation for Training Deep Networks [83.44219640437657]
Deep learning models are prone to learning spurious correlations that should not be learned as predictive clues.
We propose a causality-based training framework to reduce the spurious correlations caused by observable confounders.
We conduct experiments on two real-world tasks: Natural Language Inference (NLI) and Image Captioning.
arXiv Detail & Related papers (2021-06-07T17:47:16Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.