Sim2Real in Reconstructive Spectroscopy: Deep Learning with Augmented Device-Informed Data Simulation
- URL: http://arxiv.org/abs/2403.12354v3
- Date: Sat, 17 Aug 2024 00:50:26 GMT
- Title: Sim2Real in Reconstructive Spectroscopy: Deep Learning with Augmented Device-Informed Data Simulation
- Authors: Jiyi Chen, Pengyu Li, Yutong Wang, Pei-Cheng Ku, Qing Qu,
- Abstract summary: This work proposes a deep learning framework, namely Sim2Real, for spectral signal reconstruction in reconstructive spectroscopy.
It focuses on the challenge of reconstructing real-world spectral signals under the extreme setting where only device-informed simulated data are available for training.
- Score: 23.24059547710097
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work proposes a deep learning (DL)-based framework, namely Sim2Real, for spectral signal reconstruction in reconstructive spectroscopy, focusing on efficient data sampling and fast inference time. The work focuses on the challenge of reconstructing real-world spectral signals under the extreme setting where only device-informed simulated data are available for training. Such device-informed simulated data are much easier to collect than real-world data but exhibit large distribution shifts from their real-world counterparts. To leverage such simulated data effectively, a hierarchical data augmentation strategy is introduced to mitigate the adverse effects of this domain shift, and a corresponding neural network for the spectral signal reconstruction with our augmented data is designed. Experiments using a real dataset measured from our spectrometer device demonstrate that Sim2Real achieves significant speed-up during the inference while attaining on-par performance with the state-of-the-art optimization-based methods.
Related papers
- EvMic: Event-based Non-contact sound recovery from effective spatial-temporal modeling [69.96729022219117]
When sound waves hit an object, they induce vibrations that produce high-frequency and subtle visual changes.
Recent advances in event camera hardware show good potential for its application in visual sound recovery.
We propose a novel pipeline for non-contact sound recovery, fully utilizing spatial-temporal information from the event stream.
arXiv Detail & Related papers (2025-04-03T08:51:17Z) - Enhancing Deep Learning Based Structured Illumination Microscopy Reconstruction with Light Field Awareness [7.2529846338268475]
We propose an Awareness-of-Light-field SIM (AL-SIM) reconstruction approach that directly estimates the actual light field to correct for errors arising from data distribution shifts.
Our method demonstrates a 7% reduction in the normalized root mean square error (NRMSE) and substantially lowers reconstruction artefacts.
arXiv Detail & Related papers (2025-03-14T17:56:49Z) - Re-Visible Dual-Domain Self-Supervised Deep Unfolding Network for MRI Reconstruction [48.30341580103962]
We propose a novel re-visible dual-domain self-supervised deep unfolding network to address these issues.
We design a deep unfolding network based on Chambolle and Pock Proximal Point Algorithm (DUN-CP-PPA) to achieve end-to-end reconstruction.
Experiments conducted on the fastMRI and IXI datasets demonstrate that our method significantly outperforms state-of-the-art approaches in terms of reconstruction performance.
arXiv Detail & Related papers (2025-01-07T12:29:32Z) - Domain-Transferred Synthetic Data Generation for Improving Monocular Depth Estimation [9.812476193015488]
We propose a method of data generation in simulation using 3D synthetic environments and CycleGAN domain transfer.
We compare this method of data generation to the popular NYUDepth V2 dataset by training a depth estimation model based on the DenseDepth structure using different training sets of real and simulated data.
We evaluate the performance of the models on newly collected images and LiDAR depth data from a Husky robot to verify the generalizability of the approach and show that GAN-transformed data can serve as an effective alternative to real-world data, particularly in depth estimation.
arXiv Detail & Related papers (2024-05-02T09:21:10Z) - RaSim: A Range-aware High-fidelity RGB-D Data Simulation Pipeline for Real-world Applications [55.24463002889]
We focus on depth data synthesis and develop a range-aware RGB-D data simulation pipeline (RaSim)
In particular, high-fidelity depth data is generated by imitating the imaging principle of real-world sensors.
RaSim can be directly applied to real-world scenarios without any finetuning and excel at downstream RGB-D perception tasks.
arXiv Detail & Related papers (2024-04-05T08:52:32Z) - The Devil in the Details: Simple and Effective Optical Flow Synthetic
Data Generation [19.945859289278534]
We show that the required characteristics in an optical flow dataset are rather simple and present a simpler synthetic data generation method.
With 2D motion-based datasets, we systematically analyze the simplest yet critical factors for generating synthetic datasets.
arXiv Detail & Related papers (2023-08-14T18:01:45Z) - Diffusion Dataset Generation: Towards Closing the Sim2Real Gap for
Pedestrian Detection [0.11470070927586014]
We propose a novel method of synthetic data creation meant to close the sim2real gap for the pedestrian detection task.
Our method uses a diffusion-based architecture to learn a real-world distribution which, once trained, is used to generate datasets.
We show that training on a combination of generated and simulated data increases average precision by as much as 27.3% for pedestrian detection models in real-world data.
arXiv Detail & Related papers (2023-05-16T12:33:51Z) - Quantifying the LiDAR Sim-to-Real Domain Shift: A Detailed Investigation
Using Object Detectors and Analyzing Point Clouds at Target-Level [1.1999555634662635]
LiDAR object detection algorithms based on neural networks for autonomous driving require large amounts of data for training, validation, and testing.
We show that using simulated data for the training of neural networks leads to a domain shift of training and testing data due to differences in scenes, scenarios, and distributions.
arXiv Detail & Related papers (2023-03-03T12:52:01Z) - Synthetic Wave-Geometric Impulse Responses for Improved Speech
Dereverberation [69.1351513309953]
We show that accurately simulating the low-frequency components of Room Impulse Responses (RIRs) is important to achieving good dereverberation.
We demonstrate that speech dereverberation models trained on hybrid synthetic RIRs outperform models trained on RIRs generated by prior geometric ray tracing methods.
arXiv Detail & Related papers (2022-12-10T20:15:23Z) - Learning to Simulate Realistic LiDARs [66.7519667383175]
We introduce a pipeline for data-driven simulation of a realistic LiDAR sensor.
We show that our model can learn to encode realistic effects such as dropped points on transparent surfaces.
We use our technique to learn models of two distinct LiDAR sensors and use them to improve simulated LiDAR data accordingly.
arXiv Detail & Related papers (2022-09-22T13:12:54Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
This work proposes a synthetic data generation pipeline to address the difficulties and domain-gaps present in simulated datasets.
We show that using annotations and visual cues from existing datasets, we can facilitate automated multi-modal data generation.
arXiv Detail & Related papers (2022-08-16T20:46:08Z) - A Novel Approach For Analysis of Distributed Acoustic Sensing System
Based on Deep Transfer Learning [0.0]
Convolutional neural networks are highly capable tools for extracting spatial information.
Long-short term memory (LSTM) is an effective instrument for processing sequential data.
VGG-16 architecture in our framework manages to obtain 100% classification accuracy in 50 trainings.
arXiv Detail & Related papers (2022-06-24T19:56:01Z) - Towards Scale Consistent Monocular Visual Odometry by Learning from the
Virtual World [83.36195426897768]
We propose VRVO, a novel framework for retrieving the absolute scale from virtual data.
We first train a scale-aware disparity network using both monocular real images and stereo virtual data.
The resulting scale-consistent disparities are then integrated with a direct VO system.
arXiv Detail & Related papers (2022-03-11T01:51:54Z) - Neural BRDF Representation and Importance Sampling [79.84316447473873]
We present a compact neural network-based representation of reflectance BRDF data.
We encode BRDFs as lightweight networks, and propose a training scheme with adaptive angular sampling.
We evaluate encoding results on isotropic and anisotropic BRDFs from multiple real-world datasets.
arXiv Detail & Related papers (2021-02-11T12:00:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.