論文の概要: Learning covariate importance for matching in policy-relevant observational research
- arxiv url: http://arxiv.org/abs/2403.12367v2
- Date: Fri, 29 Aug 2025 04:17:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-01 19:45:10.780952
- Title: Learning covariate importance for matching in policy-relevant observational research
- Title(参考訳): 政策関連観測研究におけるマッチングにおける共変量の重要性の学習
- Authors: Hongzhe Zhang, Jiasheng Shi, Jing Huang,
- Abstract要約: 優先性を考慮した1対1マッチングアルゴリズム(PAMA)を提案する。
専門家によってペアリングされ、それを使って追加のユニットにマッチするユニットのサブセットデータから、共変量重大度を学習する半教師付きフレームワークである。
これは、実世界での学校教育と新型コロナウイルスの感染に関する研究に応用されている。
- 参考スコア(独自算出の注目度): 2.6361497319422176
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Matching methods are widely used to reduce confounding effects in observational studies, but conventional approaches often treat all covariates as equally important, which can result in poor performance when covariates differ in their relevance to the study. We propose the Priority-Aware one-to-one Matching Algorithm (PAMA), a novel semi-supervised framework that learns a covariate importance measure from a subset data of units that are paired by experts and uses it to match additional units. It optimizes a weighted quadratic score that reflects the relevance between each covariate and the study, and iteratively updates the covariate importance measure in the score function using unlabeled data. PAMA is model-free, but we have established that the covariate importance measure -- the learned weights -- is consistent when the oracle matching rule aligns with the design. In addition, we introduce extensions that address imbalanced data, accommodate temporal covariates, and improve robustness to mispaired observations. In simulations, PAMA outperforms standard methods, particularly in high-dimensional settings and under model misspecification. Applied to a real-world study of in-person schooling and COVID-19 transmission, PAMA recovers nearly twice as many expert-designated matches as competing methods using baseline covariates. A self-taught learning extension improves performance in simulations, though its benefit is context-dependent. To our knowledge, PAMA is the first framework to apply semi-supervised learning to observational matching with covariates of unequal relevance. It offers a scalable and interpretable tool for incorporating expert insight into policy-relevant observational research.
- Abstract(参考訳): マッチング法は、観測研究における境界効果の低減に広く用いられているが、従来の手法では、全ての共変体を等しく重要なものとして扱うことが多く、共変体が研究との関係で異なる場合、性能が低下する可能性がある。
本稿では,専門家が組み合わせたユニットのサブセットデータから共変量重大度を学習し,それを用いて追加ユニットをマッチングする,新しい半教師付きフレームワークPAMAを提案する。
重み付き2次スコアを最適化し、各共変量と研究の関係を反映し、ラベルなしデータを用いてスコア関数における共変量重要度尺度を反復的に更新する。
PAMAはモデルフリーであるが、オラクルマッチングルールが設計と整合するときに、共変量重み付け(学習重み付け)が一貫することを確立した。
さらに、不均衡なデータに対処し、時間的共変を許容し、誤観測に対する堅牢性を向上する拡張を導入する。
シミュレーションでは、PAMAは標準的な手法、特に高次元の設定やモデルのミススペクテーションにおいて性能が優れている。
PAMAは、個人教育と新型コロナウイルスの感染に関する現実世界の研究に応用され、ベースラインの共変量を用いた競合方法に比べて、専門家指定のマッチの約2倍の頻度で回復する。
自己学習型学習拡張は、コンテキスト依存の利点があるにもかかわらず、シミュレーションのパフォーマンスを改善する。
我々の知る限り、PAMAは、半教師あり学習を不平等な関係の共変量との観察的マッチングに適用する最初のフレームワークである。
政策関連観測研究に専門家の洞察を取り入れた、スケーラブルで解釈可能なツールを提供する。
関連論文リスト
- Simple and Provable Scaling Laws for the Test-Time Compute of Large Language Models [70.07661254213181]
大規模言語モデルのテスト時間計算のための2つの原理的アルゴリズムを提案する。
理論的には、1つのアルゴリズムの故障確率は、そのテスト時間計算が大きくなるにつれて指数関数的に減衰する。
論文 参考訳(メタデータ) (2024-11-29T05:29:47Z) - A Novel Ranking Scheme for the Performance Analysis of Stochastic Optimization Algorithms using the Principles of Severity [9.310464457958844]
複数の単目的最適化問題に対してアルゴリズムをランク付けする新しいランキング方式を提案する。
アルゴリズムの結果は、ロバストなブートストラップに基づく仮説テスト手法を用いて比較される。
論文 参考訳(メタデータ) (2024-05-31T19:35:34Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
クロスモーダル検索は、実際は精力的な、十分に整合した大規模データセットに依存している。
我々は、新しい雑音対応学習フレームワーク、textbfSelf-textbfReinforcing textbfErrors textbfMitigation(SREM)を導入する。
論文 参考訳(メタデータ) (2023-12-27T09:03:43Z) - Bipartite Ranking Fairness through a Model Agnostic Ordering Adjustment [54.179859639868646]
本稿では,二部類ランキングにおける公平性を実現するためのモデルに依存しない後処理フレームワークxOrderを提案する。
xOrderは、教師なしおよび教師なしの公正度メトリックを含む、さまざまな分類モデルとランキングフェアネスメトリクスと互換性がある。
提案アルゴリズムを,4つのベンチマークデータセットと2つの実世界の患者電子健康記録リポジトリ上で評価した。
論文 参考訳(メタデータ) (2023-07-27T07:42:44Z) - Optimal Clustering with Bandit Feedback [57.672609011609886]
本稿では,バンディットフィードバックを用いたオンラインクラスタリングの問題点について考察する。
これは、NPハード重み付きクラスタリング問題をサブルーチンとして解決する必要性を回避するための、シーケンシャルなテストのための新しい停止規則を含む。
合成および実世界のデータセットの広範なシミュレーションを通して、BOCの性能は下界と一致し、非適応的ベースラインアルゴリズムよりも大幅に優れることを示す。
論文 参考訳(メタデータ) (2022-02-09T06:05:05Z) - Deep Probabilistic Graph Matching [72.6690550634166]
本稿では,マッチング制約を伴わずに,元のQAPに適合する深層学習ベースのグラフマッチングフレームワークを提案する。
提案手法は,一般的な3つのベンチマーク(Pascal VOC,Wilow Object,SPair-71k)で評価され,すべてのベンチマークにおいて過去の最先端よりも優れていた。
論文 参考訳(メタデータ) (2022-01-05T13:37:27Z) - Estimating leverage scores via rank revealing methods and randomization [50.591267188664666]
任意のランクの正方形密度あるいはスパース行列の統計レバレッジスコアを推定するアルゴリズムについて検討した。
提案手法は,高密度およびスパースなランダム化次元性還元変換の合成と階調明細化法を組み合わせることに基づく。
論文 参考訳(メタデータ) (2021-05-23T19:21:55Z) - Improved Algorithms for Agnostic Pool-based Active Classification [20.12178157010804]
プールに依存しない環境でのバイナリ分類のためのアクティブラーニングを検討する。
我々のアルゴリズムは、画像分類データセットにおけるアートアクティブな学習アルゴリズムの状況よりも優れている。
論文 参考訳(メタデータ) (2021-05-13T18:24:30Z) - An Empirical Process Approach to the Union Bound: Practical Algorithms
for Combinatorial and Linear Bandits [34.06611065493047]
本稿では、信頼度と予算設定の固定化において、純探索線形帯域問題に対する近似アルゴリズムを提案する。
サンプルの複雑性がインスタンスの幾何でスケールし、アームの数に縛られた明示的な結合を避けるアルゴリズムを提供する。
また,固定予算設定における線形帯域幅に対する最初のアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-21T00:56:33Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartiteランキングは、ラベル付きデータから正の個人よりも上位の個人をランク付けするスコアリング機能を学ぶことを目的としている。
学習したスコアリング機能が、異なる保護グループ間で体系的な格差を引き起こすのではないかという懸念が高まっている。
本稿では、二部構成のランキングシナリオにおいて、それらのバランスをとるためのモデル後処理フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-15T10:08:39Z) - Learning to Accelerate Heuristic Searching for Large-Scale Maximum
Weighted b-Matching Problems in Online Advertising [51.97494906131859]
バイパルタイトbマッチングはアルゴリズム設計の基本であり、経済市場や労働市場などに広く適用されている。
既存の正確で近似的なアルゴリズムは、通常そのような設定で失敗する。
我々は、以前の事例から学んだ知識を活用して、新しい問題インスタンスを解決するtextttNeuSearcherを提案する。
論文 参考訳(メタデータ) (2020-05-09T02:48:23Z) - Ranking a set of objects: a graph based least-square approach [70.7866286425868]
同一労働者の群集によるノイズの多いペアワイズ比較から始まる$N$オブジェクトのランク付けの問題について考察する。
品質評価のために,最小二乗内在的最適化基準に依存する非適応的ランキングアルゴリズムのクラスを提案する。
論文 参考訳(メタデータ) (2020-02-26T16:19:09Z) - Learning Sparse Classifiers: Continuous and Mixed Integer Optimization
Perspectives [10.291482850329892]
混合整数計画法(MIP)は、(最適に) $ell_0$-正規化回帰問題を解くために用いられる。
数分で5万ドルの機能を処理できる正確なアルゴリズムと、$papprox6$でインスタンスに対処できる近似アルゴリズムの2つのクラスを提案する。
さらに,$ell$-regularizedsに対する新しい推定誤差境界を提案する。
論文 参考訳(メタデータ) (2020-01-17T18:47:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。