論文の概要: Electioneering the Network: Dynamic Multi-Step Adversarial Attacks for Community Canvassing
- arxiv url: http://arxiv.org/abs/2403.12399v1
- Date: Tue, 19 Mar 2024 03:14:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 15:31:57.857697
- Title: Electioneering the Network: Dynamic Multi-Step Adversarial Attacks for Community Canvassing
- Title(参考訳): ネットワークの選考: コミュニティキャンバスのための動的マルチステップ・アタック
- Authors: Saurabh Sharma, Ambuj SIngh,
- Abstract要約: 我々は,ネットワーク上の動的プロセスとして,GNNに対する勾配に基づく攻撃を可能としたコミュニティキャンバスをモデル化する。
MBACC問題はNP-Hardであり,その対策として動的マルチステップ・コミュニティ・キャンバスリング(MAC)を提案する。
- 参考スコア(独自算出の注目度): 3.053989095162017
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The problem of online social network manipulation for community canvassing is of real concern in today's world. Motivated by the study of voter models, opinion and polarization dynamics on networks, we model community canvassing as a dynamic process over a network enabled via gradient-based attacks on GNNs. Existing attacks on GNNs are all single-step and do not account for the dynamic cascading nature of information diffusion in networks. We consider the realistic scenario where an adversary uses a GNN as a proxy to predict and manipulate voter preferences, especially uncertain voters. Gradient-based attacks on the GNN inform the adversary of strategic manipulations that can be made to proselytize targeted voters. In particular, we explore $\textit{minimum budget attacks for community canvassing}$ (MBACC). We show that the MBACC problem is NP-Hard and propose Dynamic Multi-Step Adversarial Community Canvassing (MAC) to address it. MAC makes dynamic local decisions based on the heuristic of low budget and high second-order influence to convert and perturb target voters. MAC is a dynamic multi-step attack that discovers low-budget and high-influence targets from which efficient cascading attacks can happen. We evaluate MAC against single-step baselines on the MBACC problem with multiple underlying networks and GNN models. Our experiments show the superiority of MAC which is able to discover efficient multi-hop attacks for adversarial community canvassing. Our code implementation and data is available at https://github.com/saurabhsharma1993/mac.
- Abstract(参考訳): コミュニティキャンバス化のためのオンラインソーシャルネットワーク操作の問題は、今日の世界で本当に懸念されている。
ネットワーク上での投票モデル、意見、偏極のダイナミクスの研究により、GNNに対する勾配に基づく攻撃によって可能となるネットワーク上の動的なプロセスとして、コミュニティキャンバスをモデル化する。
既存のGNNに対する攻撃はすべてシングルステップであり、ネットワーク内の情報拡散の動的カスケードの性質を考慮していない。
敵がGNNを代理として利用して投票者の選好、特に不確実な有権者を予測・操作する現実的なシナリオを考察する。
GNNに対するグラディエントベースの攻撃は、ターゲットの有権者を散文化するための戦略的な操作を敵に通知する。
特に、$\textit{minimum budget attack for community canvassing}$ (MBACC)について調べる。
MBACC問題はNP-Hardであり,その対策として動的マルチステップ・コミュニティ・キャンバスリング(MAC)を提案する。
MACは低予算のヒューリスティックと高い第2次影響力に基づいて動的局所決定を行い、ターゲットの投票を変換し、摂動する。
MACは動的多段階攻撃であり、効率的なカスケード攻撃が起こるような低予算かつ高影響の標的を発見する。
複数の基盤ネットワークとGNNモデルを用いて,MBACC問題に基づく単一ステップベースラインに対するMACの評価を行った。
本実験は, 敵コミュニティキャンバスの効率的なマルチホップ攻撃を検出できるMACの優位性を示すものである。
コードの実装とデータはhttps://github.com/saurabhsharma 1993/mac.comで公開されています。
関連論文リスト
- Attentional Graph Neural Networks for Robust Massive Network
Localization [20.416879207269446]
グラフニューラルネットワーク(GNN)は、機械学習における分類タスクの顕著なツールとして登場した。
本稿では,GNNとアテンション機構を統合し,ネットワークローカライゼーションという難解な非線形回帰問題に対処する。
我々はまず,厳密な非視線(NLOS)条件下でも例外的な精度を示すグラフ畳み込みネットワーク(GCN)に基づく新しいネットワークローカライゼーション手法を提案する。
論文 参考訳(メタデータ) (2023-11-28T15:05:13Z) - Resilient Graph Neural Networks: A Coupled Dynamical Systems Approach [12.856220339384269]
グラフニューラルネットワーク(GNN)は、さまざまなグラフベースのタスクに対処するための重要なコンポーネントとして、自らを確立している。
彼らの顕著な成功にもかかわらず、GNNは相変わらず敵の攻撃の形で摂動を入力できる。
本稿では, 連成力学系のレンズを用いて, 対向摂動に対するGNNの強化手法を提案する。
論文 参考訳(メタデータ) (2023-11-12T20:06:48Z) - INFLECT-DGNN: Influencer Prediction with Dynamic Graph Neural Networks [4.677411878315618]
INFLuencer prEdiCTion with Dynamic Graph Neural Networks (GNN) and Recurrent Neural Networks (RNN)について述べる。
モデル予測に基づく意思決定を支援する,新たな利益主導型フレームワークを提案する。
我々の研究は、参照とターゲットマーケティングの分野に重大な影響を及ぼす。
論文 参考訳(メタデータ) (2023-07-16T19:04:48Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
我々は,GNNSafeと呼ばれるグラフ上での学習のための,シンプルで強力で効率的なOOD検出モデルを提案する。
GNNSafeは、最先端技術に対するAUROCの改善を最大17.0%で達成しており、そのような未開発領域では単純だが強力なベースラインとして機能する可能性がある。
論文 参考訳(メタデータ) (2023-02-06T16:38:43Z) - Influencer Detection with Dynamic Graph Neural Networks [56.1837101824783]
インフルエンサー検出のための動的グラフニューラルネットワーク(GNN)の構成について検討する。
GNNにおける深層多面的注意と時間特性の符号化が性能を著しく向上させることを示す。
論文 参考訳(メタデータ) (2022-11-15T13:00:25Z) - GNN at the Edge: Cost-Efficient Graph Neural Network Processing over
Distributed Edge Servers [24.109721494781592]
グラフニューラルネットワーク(GNN)はまだ探索中であり、その広範な採用に対する大きな違いを示している。
本稿では,多層ヘテロジニアスエッジネットワーク上での分散GNN処理のコスト最適化について検討する。
提案手法は, 高速収束速度で95.8%以上のコスト削減を行い, デファクトベースラインよりも優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2022-10-31T13:03:16Z) - Anomal-E: A Self-Supervised Network Intrusion Detection System based on
Graph Neural Networks [0.0]
本稿では,自己教師型ネットワーク侵入と異常検出のためのグラフニューラルネットワーク(GNN)の応用について検討する。
GNNは、グラフ構造を学習に組み込んだグラフベースのデータのためのディープラーニングアプローチである。
本稿では, エッジ特徴とグラフトポロジ構造を利用したGNNによる侵入・異常検出手法であるAnomal-Eを提案する。
論文 参考訳(メタデータ) (2022-07-14T10:59:39Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - Dynamics-aware Adversarial Attack of 3D Sparse Convolution Network [75.1236305913734]
ディープニューラルネットワークにおける動的に認識される敵攻撃問題について検討する。
ほとんどの既存の敵攻撃アルゴリズムは基本的な前提の下で設計されており、ネットワークアーキテクチャは攻撃プロセス全体を通して固定されている。
本稿では,LGM(Leaded Gradient Method)を提案する。
論文 参考訳(メタデータ) (2021-12-17T10:53:35Z) - GraphMI: Extracting Private Graph Data from Graph Neural Networks [59.05178231559796]
GNNを反転させてトレーニンググラフのプライベートグラフデータを抽出することを目的とした textbfGraph textbfModel textbfInversion attack (GraphMI) を提案する。
具体的には,グラフ特徴の空間性と滑らかさを保ちながら,グラフエッジの離散性に対処する勾配モジュールを提案する。
エッジ推論のためのグラフトポロジ、ノード属性、ターゲットモデルパラメータを効率的に活用するグラフ自動エンコーダモジュールを設計する。
論文 参考訳(メタデータ) (2021-06-05T07:07:52Z) - Supervised Domain Adaptation using Graph Embedding [86.3361797111839]
領域適応法は、2つの領域間の分布がシフトし、それを認識しようとすると仮定する。
グラフ埋め込みに基づく汎用フレームワークを提案する。
提案手法が強力なドメイン適応フレームワークにつながることを示す。
論文 参考訳(メタデータ) (2020-03-09T12:25:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。