Finding the Missing Data: A BERT-inspired Approach Against Package Loss in Wireless Sensing
- URL: http://arxiv.org/abs/2403.12400v1
- Date: Tue, 19 Mar 2024 03:16:52 GMT
- Title: Finding the Missing Data: A BERT-inspired Approach Against Package Loss in Wireless Sensing
- Authors: Zijian Zhao, Tingwei Chen, Fanyi Meng, Hang Li, Xiaoyang Li, Guangxu Zhu,
- Abstract summary: We propose a deep learning model based on Bidirectional Representations from Transformers (BERT) for CSI recovery.
CSI-BERT can be trained in an self-supervised manner on the target dataset without the need for additional data.
Experimental results demonstrate that CSI-BERT achieves lower error rates and faster speed compared to traditional methods.
- Score: 14.973433993744708
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the development of various deep learning methods for Wi-Fi sensing, package loss often results in noncontinuous estimation of the Channel State Information (CSI), which negatively impacts the performance of the learning models. To overcome this challenge, we propose a deep learning model based on Bidirectional Encoder Representations from Transformers (BERT) for CSI recovery, named CSI-BERT. CSI-BERT can be trained in an self-supervised manner on the target dataset without the need for additional data. Furthermore, unlike traditional interpolation methods that focus on one subcarrier at a time, CSI-BERT captures the sequential relationships across different subcarriers. Experimental results demonstrate that CSI-BERT achieves lower error rates and faster speed compared to traditional interpolation methods, even when facing with high loss rates. Moreover, by harnessing the recovered CSI obtained from CSI-BERT, other deep learning models like Residual Network and Recurrent Neural Network can achieve an average increase in accuracy of approximately 15\% in Wi-Fi sensing tasks. The collected dataset WiGesture and code for our model are publicly available at https://github.com/RS2002/CSI-BERT.
Related papers
- Improving WiFi CSI Fingerprinting with IQ Samples [11.35984799379648]
Identity authentication is crucial for ensuring the information security of wireless communication.
RF fingerprinting techniques provide a prom-ising supplement to cryptography-based authentication approaches.
Recent advances advocate easily obtainable channel state in-formation (CSI) by commercial WiFi devices for lightweight RF fingerprinting.
We propose CSI2Q, a novel CSI fingerprinting system that achieves comparable performance to IQ-based approaches.
arXiv Detail & Related papers (2024-08-13T12:21:14Z) - Cross-domain Learning Framework for Tracking Users in RIS-aided Multi-band ISAC Systems with Sparse Labeled Data [55.70071704247794]
Integrated sensing and communications (ISAC) is pivotal for 6G communications and is boosted by the rapid development of reconfigurable intelligent surfaces (RISs)
This paper proposes the X2Track framework, where we model the tracking function by a hierarchical architecture, jointly utilizing multi-modal CSI indicators across multiple bands, and optimize it in a cross-domain manner.
Under X2Track, we design an efficient deep learning algorithm to minimize tracking errors, based on transformer neural networks and adversarial learning techniques.
arXiv Detail & Related papers (2024-05-10T08:04:27Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
Single-frame infrared small target (SIRST) detection aims to recognize small targets from clutter backgrounds.
With the development of Transformer, the scale of SIRST models is constantly increasing.
With a rich diversity of infrared small target data, our algorithm significantly improves the model performance and convergence speed.
arXiv Detail & Related papers (2024-03-08T16:14:54Z) - Dig-CSI: A Distributed and Generative Model Assisted CSI Feedback
Training Framework [6.216538343278333]
We design a CSI feedback training framework called Dig-CSI.
The dataset for training the CSI feedback model is produced by the distributed generators uploaded by each user equipment (UE) but not through local data upload.
Experimental results show that Dig-CSI can train a global CSI feedback model with comparable performance to the model trained with classical centralized learning.
arXiv Detail & Related papers (2023-12-10T15:55:57Z) - A Low-Overhead Incorporation-Extrapolation based Few-Shot CSI Feedback Framework for Massive MIMO Systems [45.22132581755417]
Accurate channel state information (CSI) is essential for downlink precoding in frequency division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems.
However, obtaining CSI through feedback from the user equipment (UE) becomes challenging with the increasing scale of antennas and subcarriers.
Deep learning-based methods have emerged for compressing CSI but these methods require substantial collected samples.
Existing deep learning methods also suffer from dramatically growing feedback overhead owing to their focus on full-dimensional CSI feedback.
We propose a low-overhead-Extrapolation based Few-Shot CSI
arXiv Detail & Related papers (2023-12-07T06:01:47Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - Unsupervised Spike Depth Estimation via Cross-modality Cross-domain Knowledge Transfer [53.413305467674434]
We introduce open-source RGB data to support spike depth estimation, leveraging its annotations and spatial information.
We propose a cross-modality cross-domain (BiCross) framework to realize unsupervised spike depth estimation.
Our method achieves state-of-the-art (SOTA) performances, compared with RGB-oriented unsupervised depth estimation methods.
arXiv Detail & Related papers (2022-08-26T09:35:20Z) - Overview of Deep Learning-based CSI Feedback in Massive MIMO Systems [77.0986534024972]
Deep learning (DL)-based CSI feedback refers to CSI compression and reconstruction by a DL-based autoencoder and can greatly reduce feedback overhead.
The focus is on novel neural network architectures and utilization of communication expert knowledge to improve CSI feedback accuracy.
arXiv Detail & Related papers (2022-06-29T03:28:57Z) - Deep Learning based Covert Attack Identification for Industrial Control
Systems [5.299113288020827]
We develop a data-driven framework that can be used to detect, diagnose, and localize a type of cyberattack called covert attacks on smart grids.
The framework has a hybrid design that combines an autoencoder, a recurrent neural network (RNN) with a Long-Short-Term-Memory layer, and a Deep Neural Network (DNN)
arXiv Detail & Related papers (2020-09-25T17:48:43Z) - Using GAN to Enhance the Accuracy of Indoor Human Activity Recognition [0.9239657838690226]
We present a semi-supervised learning method for activity recognition systems in which long short-term memory (LSTM) is employed to learn features and recognize seven different actions.
Our experimental results confirm that this model can increase classification accuracy by 3.4% and reduce the Log loss by almost 16%.
arXiv Detail & Related papers (2020-04-23T15:22:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.