Improving WiFi CSI Fingerprinting with IQ Samples
- URL: http://arxiv.org/abs/2408.06848v1
- Date: Tue, 13 Aug 2024 12:21:14 GMT
- Title: Improving WiFi CSI Fingerprinting with IQ Samples
- Authors: Junjie Wang, Yong Huang, Feiyang Zhao, Wenjing Wang, Dalong Zhang, Wei Wang,
- Abstract summary: Identity authentication is crucial for ensuring the information security of wireless communication.
RF fingerprinting techniques provide a prom-ising supplement to cryptography-based authentication approaches.
Recent advances advocate easily obtainable channel state in-formation (CSI) by commercial WiFi devices for lightweight RF fingerprinting.
We propose CSI2Q, a novel CSI fingerprinting system that achieves comparable performance to IQ-based approaches.
- Score: 11.35984799379648
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Identity authentication is crucial for ensuring the information security of wireless communication. Radio frequency (RF) fingerprinting techniques provide a prom-ising supplement to cryptography-based authentication approaches but rely on dedicated equipment to capture in-phase and quadrature (IQ) samples, hindering their wide adoption. Recent advances advocate easily obtainable channel state in-formation (CSI) by commercial WiFi devices for lightweight RF fingerprinting, but they mainly focus on eliminating channel interference and cannot address the challenges of coarse granularity and information loss of CSI measurements. To overcome these challenges, we propose CSI2Q, a novel CSI fingerprinting sys-tem that achieves comparable performance to IQ-based approaches. Instead of ex-tracting fingerprints directly from raw CSI measurements, CSI2Q first transforms them into time-domain signals that share the same feature space with IQ samples. Then, the distinct advantages of an IQ fingerprinting model in feature extraction are transferred to its CSI counterpart via an auxiliary training strategy. Finally, the trained CSI fingerprinting model is used to decide which device the sample under test comes from. We evaluate CSI2Q on both synthetic and real CSI datasets. On the synthetic dataset, our system can improve the recognition accuracy from 76% to 91%. On the real dataset, CSI2Q boosts the accuracy from 67% to 82%.
Related papers
- Cross-domain Learning Framework for Tracking Users in RIS-aided Multi-band ISAC Systems with Sparse Labeled Data [55.70071704247794]
Integrated sensing and communications (ISAC) is pivotal for 6G communications and is boosted by the rapid development of reconfigurable intelligent surfaces (RISs)
This paper proposes the X2Track framework, where we model the tracking function by a hierarchical architecture, jointly utilizing multi-modal CSI indicators across multiple bands, and optimize it in a cross-domain manner.
Under X2Track, we design an efficient deep learning algorithm to minimize tracking errors, based on transformer neural networks and adversarial learning techniques.
arXiv Detail & Related papers (2024-05-10T08:04:27Z) - Finding the Missing Data: A BERT-inspired Approach Against Package Loss in Wireless Sensing [14.973433993744708]
We propose a deep learning model based on Bidirectional Representations from Transformers (BERT) for CSI recovery.
CSI-BERT can be trained in an self-supervised manner on the target dataset without the need for additional data.
Experimental results demonstrate that CSI-BERT achieves lower error rates and faster speed compared to traditional methods.
arXiv Detail & Related papers (2024-03-19T03:16:52Z) - RSCNet: Dynamic CSI Compression for Cloud-based WiFi Sensing [9.34104644481967]
This paper develops a novel Real-time Sensing and Compression Network (RSCNet) which enables sensing with compressed CSI.
RSCNet balances the trade-off between CSI compression and sensing precision, thus streamlining real-time cloud-based WiFi sensing with reduced communication costs.
Numerical findings demonstrate the gains of RSCNet over the existing benchmarks like SenseFi, showcasing a sensing accuracy of 97.4% with minimal CSI reconstruction error.
arXiv Detail & Related papers (2024-01-19T20:30:23Z) - A Low-Overhead Incorporation-Extrapolation based Few-Shot CSI Feedback Framework for Massive MIMO Systems [45.22132581755417]
Accurate channel state information (CSI) is essential for downlink precoding in frequency division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems.
However, obtaining CSI through feedback from the user equipment (UE) becomes challenging with the increasing scale of antennas and subcarriers.
Deep learning-based methods have emerged for compressing CSI but these methods require substantial collected samples.
Existing deep learning methods also suffer from dramatically growing feedback overhead owing to their focus on full-dimensional CSI feedback.
We propose a low-overhead-Extrapolation based Few-Shot CSI
arXiv Detail & Related papers (2023-12-07T06:01:47Z) - A Universal Latent Fingerprint Enhancer Using Transformers [47.87570819350573]
This study aims to develop a fast method, which we call ULPrint, to enhance various latent fingerprint types.
In closed-set identification accuracy experiments, the enhanced image was able to improve the performance of the MSU-AFIS from 61.56% to 75.19%.
arXiv Detail & Related papers (2023-05-31T23:01:11Z) - Attention-Enhanced Deep Learning for Device-Free Through-the-Wall
Presence Detection Using Indoor WiFi Systems [9.087163485833054]
We propose a novel system for human presence detection using the channel state information (CSI) of WiFi signals.
Our system named attention-enhanced deep learning for presence detection (ALPD) employs an attention mechanism to automatically select informative subcarriers from the CSI data.
We evaluate the proposed ALPD system by deploying a pair of WiFi access points (APs) for collecting CSI dataset, which is further compared with several benchmarks.
arXiv Detail & Related papers (2023-04-25T19:17:36Z) - AFR-Net: Attention-Driven Fingerprint Recognition Network [47.87570819350573]
We improve initial studies on the use of vision transformers (ViT) for biometric recognition, including fingerprint recognition.
We propose a realignment strategy using local embeddings extracted from intermediate feature maps within the networks to refine the global embeddings in low certainty situations.
This strategy can be applied as a wrapper to any existing deep learning network (including attention-based, CNN-based, or both) to boost its performance.
arXiv Detail & Related papers (2022-11-25T05:10:39Z) - CRONOS: Colorization and Contrastive Learning for Device-Free NLoS Human
Presence Detection using Wi-Fi CSI [9.927073290898848]
Device-free human detection through sensors or cameras has been widely adopted, but it comes with privacy issues as well as misdetection for motionless people.
We propose a system called CRONOS, which generates dynamic recurrence plots (RPs) and color-coded CSI ratios to distinguish mobile and stationary people.
arXiv Detail & Related papers (2022-11-07T16:18:18Z) - SpoofGAN: Synthetic Fingerprint Spoof Images [47.87570819350573]
A major limitation to advances in fingerprint spoof detection is the lack of publicly available, large-scale fingerprint spoof datasets.
This work aims to demonstrate the utility of synthetic (both live and spoof) fingerprints in supplying these algorithms with sufficient data.
arXiv Detail & Related papers (2022-04-13T16:27:27Z) - Using GAN to Enhance the Accuracy of Indoor Human Activity Recognition [0.9239657838690226]
We present a semi-supervised learning method for activity recognition systems in which long short-term memory (LSTM) is employed to learn features and recognize seven different actions.
Our experimental results confirm that this model can increase classification accuracy by 3.4% and reduce the Log loss by almost 16%.
arXiv Detail & Related papers (2020-04-23T15:22:05Z) - DeepSIC: Deep Soft Interference Cancellation for Multiuser MIMO
Detection [98.43451011898212]
In multiuser multiple-input multiple-output (MIMO) setups, where multiple symbols are simultaneously transmitted, accurate symbol detection is challenging.
We propose a data-driven implementation of the iterative soft interference cancellation (SIC) algorithm which we refer to as DeepSIC.
DeepSIC learns to carry out joint detection from a limited set of training samples without requiring the channel to be linear.
arXiv Detail & Related papers (2020-02-08T18:31:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.