SC-Diff: 3D Shape Completion with Latent Diffusion Models
- URL: http://arxiv.org/abs/2403.12470v1
- Date: Tue, 19 Mar 2024 06:01:11 GMT
- Title: SC-Diff: 3D Shape Completion with Latent Diffusion Models
- Authors: Juan D. Galvis, Xingxing Zuo, Simon Schaefer, Stefan Leutengger,
- Abstract summary: This paper introduces a 3D shape completion approach using a 3D latent diffusion model optimized for completing shapes.
Our method combines image-based conditioning through cross-attention and spatial conditioning through the integration of 3D features from captured partial scans.
- Score: 4.913210912019975
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a 3D shape completion approach using a 3D latent diffusion model optimized for completing shapes, represented as Truncated Signed Distance Functions (TSDFs), from partial 3D scans. Our method combines image-based conditioning through cross-attention and spatial conditioning through the integration of 3D features from captured partial scans. This dual guidance enables high-fidelity, realistic shape completions at superior resolutions. At the core of our approach is the compression of 3D data into a low-dimensional latent space using an auto-encoder inspired by 2D latent diffusion models. This compression facilitates the processing of higher-resolution shapes and allows us to apply our model across multiple object classes, a significant improvement over other existing diffusion-based shape completion methods, which often require a separate diffusion model for each class. We validated our approach against two common benchmarks in the field of shape completion, demonstrating competitive performance in terms of accuracy and realism and performing on par with state-of-the-art methods despite operating at a higher resolution with a single model for all object classes. We present a comprehensive evaluation of our model, showcasing its efficacy in handling diverse shape completion challenges, even on unseen object classes. The code will be released upon acceptance.
Related papers
- From Diffusion to Resolution: Leveraging 2D Diffusion Models for 3D Super-Resolution Task [19.56372155146739]
We present a novel approach that leverages the 2D diffusion model and lateral continuity within the volume to enhance 3D volume electron microscopy (vEM) super-resolution.
Our results on two publicly available focused ion beam scanning electron microscopy (FIB-SEM) datasets demonstrate the robustness and practical applicability of our framework.
arXiv Detail & Related papers (2024-11-25T09:12:55Z) - ComboVerse: Compositional 3D Assets Creation Using Spatially-Aware Diffusion Guidance [76.7746870349809]
We present ComboVerse, a 3D generation framework that produces high-quality 3D assets with complex compositions by learning to combine multiple models.
Our proposed framework emphasizes spatial alignment of objects, compared with standard score distillation sampling.
arXiv Detail & Related papers (2024-03-19T03:39:43Z) - Robust 3D Tracking with Quality-Aware Shape Completion [67.9748164949519]
We propose a synthetic target representation composed of dense and complete point clouds depicting the target shape precisely by shape completion for robust 3D tracking.
Specifically, we design a voxelized 3D tracking framework with shape completion, in which we propose a quality-aware shape completion mechanism to alleviate the adverse effect of noisy historical predictions.
arXiv Detail & Related papers (2023-12-17T04:50:24Z) - Diffusion-SS3D: Diffusion Model for Semi-supervised 3D Object Detection [77.23918785277404]
We present Diffusion-SS3D, a new perspective of enhancing the quality of pseudo-labels via the diffusion model for semi-supervised 3D object detection.
Specifically, we include noises to produce corrupted 3D object size and class label, distributions, and then utilize the diffusion model as a denoising process to obtain bounding box outputs.
We conduct experiments on the ScanNet and SUN RGB-D benchmark datasets to demonstrate that our approach achieves state-of-the-art performance against existing methods.
arXiv Detail & Related papers (2023-12-05T18:54:03Z) - HoloFusion: Towards Photo-realistic 3D Generative Modeling [77.03830223281787]
Diffusion-based image generators can now produce high-quality and diverse samples, but their success has yet to fully translate to 3D generation.
We present HoloFusion, a method that combines the best of these approaches to produce high-fidelity, plausible, and diverse 3D samples.
arXiv Detail & Related papers (2023-08-28T01:19:33Z) - Sparse3D: Distilling Multiview-Consistent Diffusion for Object
Reconstruction from Sparse Views [47.215089338101066]
We present Sparse3D, a novel 3D reconstruction method tailored for sparse view inputs.
Our approach distills robust priors from a multiview-consistent diffusion model to refine a neural radiance field.
By tapping into 2D priors from powerful image diffusion models, our integrated model consistently delivers high-quality results.
arXiv Detail & Related papers (2023-08-27T11:52:00Z) - DiffComplete: Diffusion-based Generative 3D Shape Completion [114.43353365917015]
We introduce a new diffusion-based approach for shape completion on 3D range scans.
We strike a balance between realism, multi-modality, and high fidelity.
DiffComplete sets a new SOTA performance on two large-scale 3D shape completion benchmarks.
arXiv Detail & Related papers (2023-06-28T16:07:36Z) - Locally Attentional SDF Diffusion for Controllable 3D Shape Generation [24.83724829092307]
We propose a diffusion-based 3D generation framework, to model plausible 3D shapes, via 2D sketch image input.
Our method is built on a two-stage diffusion model. The first stage, named occupancy-diffusion, aims to generate a low-resolution occupancy field to approximate the shape shell.
The second stage, named SDF-diffusion, synthesizes a high-resolution signed distance field within the occupied voxels determined by the first stage to extract fine geometry.
arXiv Detail & Related papers (2023-05-08T05:07:23Z) - HoloDiffusion: Training a 3D Diffusion Model using 2D Images [71.1144397510333]
We introduce a new diffusion setup that can be trained, end-to-end, with only posed 2D images for supervision.
We show that our diffusion models are scalable, train robustly, and are competitive in terms of sample quality and fidelity to existing approaches for 3D generative modeling.
arXiv Detail & Related papers (2023-03-29T07:35:56Z) - 3D Neural Field Generation using Triplane Diffusion [37.46688195622667]
We present an efficient diffusion-based model for 3D-aware generation of neural fields.
Our approach pre-processes training data, such as ShapeNet meshes, by converting them to continuous occupancy fields.
We demonstrate state-of-the-art results on 3D generation on several object classes from ShapeNet.
arXiv Detail & Related papers (2022-11-30T01:55:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.