Online Marketplace: A Benchmark for Data Management in Microservices
- URL: http://arxiv.org/abs/2403.12605v4
- Date: Sat, 11 Jan 2025 15:09:13 GMT
- Title: Online Marketplace: A Benchmark for Data Management in Microservices
- Authors: Rodrigo Laigner, Zhexiang Zhang, Yijian Liu, Leonardo Freitas Gomes, Yongluan Zhou,
- Abstract summary: Online Marketplace is a microservice benchmark that highlights core data management challenges that existing benchmarks fail to address.
We have defined criteria for various data management issues to enable proper comparison across data systems and platforms.
This highlights the significance of Online Marketplace in advancing future data systems to meet the needs of microservice practitioners.
- Score: 1.9338699922911442
- License:
- Abstract: Microservice architectures have become a popular approach for designing scalable distributed applications. Despite their extensive use in industrial settings for over a decade, there is limited understanding of the data management challenges that arise in these applications. Consequently, it has been difficult to advance data system technologies that effectively support microservice applications. To fill this gap, we present Online Marketplace, a microservice benchmark that highlights core data management challenges that existing benchmarks fail to address. These challenges include transaction processing, query processing, event processing, constraint enforcement, and data replication. We have defined criteria for various data management issues to enable proper comparison across data systems and platforms. Through case studies with state-of-the-art data platforms, we discuss the issues encountered while implementing and meeting Online Marketplace's criteria. By capturing the overhead of meeting the key data management requirements that are overlooked by existing benchmarks, we gain actionable insights into the experimental platforms. This highlights the significance of Online Marketplace in advancing future data systems to meet the needs of microservice practitioners.
Related papers
- Towards Human-Guided, Data-Centric LLM Co-Pilots [53.35493881390917]
CliMB-DC is a human-guided, data-centric framework for machine learning co-pilots.
It combines advanced data-centric tools with LLM-driven reasoning to enable robust, context-aware data processing.
We show how CliMB-DC can transform uncurated datasets into ML-ready formats.
arXiv Detail & Related papers (2025-01-17T17:51:22Z) - A Survey on Data Markets [73.07800441775814]
Growing trend of trading data for greater welfare has led to the emergence of data markets.
A data market is any mechanism whereby the exchange of data products including datasets and data derivatives takes place.
It serves as a coordinating mechanism by which several functions, including the pricing and the distribution of data, interact.
arXiv Detail & Related papers (2024-11-09T15:09:24Z) - Insights on Microservice Architecture Through the Eyes of Industry Practitioners [39.58317527488534]
The adoption of microservice architecture has seen a considerable upswing in recent years.
This study investigates the motivations, activities, and challenges associated with migrating from monolithic legacy systems.
arXiv Detail & Related papers (2024-08-19T21:56:58Z) - An Empirical Study on Challenges of Event Management in Microservice Architectures [3.0184596495288263]
This paper provides the first comprehensive characterization of event management practices and challenges.
We find that developers encounter many problems, including large event payloads, auditing event flows, and ordering constraints processing events.
This suggests that developers are not sufficiently served by stateof-the-practice technologies.
arXiv Detail & Related papers (2024-08-01T10:19:37Z) - Benchmarking Data Management Systems for Microservices [1.9948490148513414]
Microservice architectures are a popular choice for deploying large-scale data-intensive applications.
Existing microservice benchmarks lack essential data management challenges.
Online Marketplace is a novel benchmark that embraces core data management requirements.
arXiv Detail & Related papers (2024-05-19T11:55:45Z) - A microservice architecture for real-time IoT data processing: A
reusable Web of things approach for smart ports [4.612539452170667]
We propose a fully reusable microservice architecture, standardized through the use of the Web of things paradigm.
We present a fully reusable implementation of the architecture in the field of air quality monitoring and alerting smart ports.
arXiv Detail & Related papers (2024-01-27T11:40:38Z) - Data Acquisition: A New Frontier in Data-centric AI [65.90972015426274]
We first present an investigation of current data marketplaces, revealing lack of platforms offering detailed information about datasets.
We then introduce the DAM challenge, a benchmark to model the interaction between the data providers and acquirers.
Our evaluation of the submitted strategies underlines the need for effective data acquisition strategies in Machine Learning.
arXiv Detail & Related papers (2023-11-22T22:15:17Z) - QI2 -- an Interactive Tool for Data Quality Assurance [63.379471124899915]
The planned AI Act from the European commission defines challenging legal requirements for data quality.
We introduce a novel approach that supports the data quality assurance process of multiple data quality aspects.
arXiv Detail & Related papers (2023-07-07T07:06:38Z) - DataPerf: Benchmarks for Data-Centric AI Development [81.03754002516862]
DataPerf is a community-led benchmark suite for evaluating ML datasets and data-centric algorithms.
We provide an open, online platform with multiple rounds of challenges to support this iterative development.
The benchmarks, online evaluation platform, and baseline implementations are open source.
arXiv Detail & Related papers (2022-07-20T17:47:54Z) - Benchmarks for Deep Off-Policy Evaluation [152.28569758144022]
We present a collection of policies that can be used for benchmarking off-policy evaluation.
The goal of our benchmark is to provide a standardized measure of progress that is motivated from a set of principles.
We provide open-source access to our data and code to foster future research in this area.
arXiv Detail & Related papers (2021-03-30T18:09:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.