A Practical Guide to Sample-based Statistical Distances for Evaluating Generative Models in Science
- URL: http://arxiv.org/abs/2403.12636v2
- Date: Thu, 10 Oct 2024 09:51:27 GMT
- Title: A Practical Guide to Sample-based Statistical Distances for Evaluating Generative Models in Science
- Authors: Sebastian Bischoff, Alana Darcher, Michael Deistler, Richard Gao, Franziska Gerken, Manuel Gloeckler, Lisa Haxel, Jaivardhan Kapoor, Janne K Lappalainen, Jakob H Macke, Guy Moss, Matthijs Pals, Felix Pei, Rachel Rapp, A Erdem Sağtekin, Cornelius Schröder, Auguste Schulz, Zinovia Stefanidi, Shoji Toyota, Linda Ulmer, Julius Vetter,
- Abstract summary: We focus on four commonly used notions of statistical distances representing different methodologies.
We highlight the intuition behind each distance and explain their merits, scalability, complexity, and pitfalls.
We evaluate generative models from different scientific domains, namely a model of decision-making and a model generating medical images.
- Score: 7.2447605934304375
- License:
- Abstract: Generative models are invaluable in many fields of science because of their ability to capture high-dimensional and complicated distributions, such as photo-realistic images, protein structures, and connectomes. How do we evaluate the samples these models generate? This work aims to provide an accessible entry point to understanding popular sample-based statistical distances, requiring only foundational knowledge in mathematics and statistics. We focus on four commonly used notions of statistical distances representing different methodologies: Using low-dimensional projections (Sliced-Wasserstein; SW), obtaining a distance using classifiers (Classifier Two-Sample Tests; C2ST), using embeddings through kernels (Maximum Mean Discrepancy; MMD), or neural networks (Fr\'echet Inception Distance; FID). We highlight the intuition behind each distance and explain their merits, scalability, complexity, and pitfalls. To demonstrate how these distances are used in practice, we evaluate generative models from different scientific domains, namely a model of decision-making and a model generating medical images. We showcase that distinct distances can give different results on similar data. Through this guide, we aim to help researchers to use, interpret, and evaluate statistical distances for generative models in science.
Related papers
- Hierarchical Visual Categories Modeling: A Joint Representation Learning and Density Estimation Framework for Out-of-Distribution Detection [28.442470704073767]
This paper proposes a novel hierarchical visual category modeling scheme to separate out-of-distribution data from in-distribution data.
We conduct experiments on seven popular benchmarks, including CIFAR, iNaturalist, SUN, Places, Textures, ImageNet-O, and OpenImage-O.
Our visual representation has a competitive performance when compared with features learned by classical methods.
arXiv Detail & Related papers (2024-08-28T07:05:46Z) - Exposing flaws of generative model evaluation metrics and their unfair
treatment of diffusion models [14.330863905963442]
We compare 17 modern metrics for evaluating the overall performance, fidelity, diversity, rarity, and memorization of generative models.
We find that the state-of-the-art perceptual realism of diffusion models as judged by humans is not reflected in commonly reported metrics such as FID.
Next, we investigate data memorization, and find that generative models do memorize training examples on simple, smaller datasets like CIFAR10, but not necessarily on more complex datasets like ImageNet.
arXiv Detail & Related papers (2023-06-07T18:00:00Z) - Revisiting the Evaluation of Image Synthesis with GANs [55.72247435112475]
This study presents an empirical investigation into the evaluation of synthesis performance, with generative adversarial networks (GANs) as a representative of generative models.
In particular, we make in-depth analyses of various factors, including how to represent a data point in the representation space, how to calculate a fair distance using selected samples, and how many instances to use from each set.
arXiv Detail & Related papers (2023-04-04T17:54:32Z) - MAUVE Scores for Generative Models: Theory and Practice [95.86006777961182]
We present MAUVE, a family of comparison measures between pairs of distributions such as those encountered in the generative modeling of text or images.
We find that MAUVE can quantify the gaps between the distributions of human-written text and those of modern neural language models.
We demonstrate in the vision domain that MAUVE can identify known properties of generated images on par with or better than existing metrics.
arXiv Detail & Related papers (2022-12-30T07:37:40Z) - Geometric and Topological Inference for Deep Representations of Complex
Networks [13.173307471333619]
We present a class of statistics that emphasize the topology as well as the geometry of representations.
We evaluate these statistics in terms of the sensitivity and specificity that they afford when used for model selection.
These new methods enable brain and computer scientists to visualize the dynamic representational transformations learned by brains and models.
arXiv Detail & Related papers (2022-03-10T17:14:14Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
We take a two-step approach by first modeling the probability distribution and then sampling from that model.
We show that these models can approximate a large class of densities concisely using few evaluations, and present a simple algorithm to effectively sample from these models.
arXiv Detail & Related papers (2021-10-20T12:25:22Z) - Multi-Branch Deep Radial Basis Function Networks for Facial Emotion
Recognition [80.35852245488043]
We propose a CNN based architecture enhanced with multiple branches formed by radial basis function (RBF) units.
RBF units capture local patterns shared by similar instances using an intermediate representation.
We show it is the incorporation of local information what makes the proposed model competitive.
arXiv Detail & Related papers (2021-09-07T21:05:56Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.