Federated Semi-supervised Learning for Medical Image Segmentation with intra-client and inter-client Consistency
- URL: http://arxiv.org/abs/2403.12695v1
- Date: Tue, 19 Mar 2024 12:52:38 GMT
- Title: Federated Semi-supervised Learning for Medical Image Segmentation with intra-client and inter-client Consistency
- Authors: Yubin Zheng, Peng Tang, Tianjie Ju, Weidong Qiu, Bo Yan,
- Abstract summary: Federated learning aims to train a shared model of isolated clients without local data exchange.
In this work, we propose a novel federated semi-supervised learning framework for medical image segmentation.
- Score: 10.16245019262119
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical image segmentation plays a vital role in clinic disease diagnosis and medical image analysis. However, labeling medical images for segmentation task is tough due to the indispensable domain expertise of radiologists. Furthermore, considering the privacy and sensitivity of medical images, it is impractical to build a centralized segmentation dataset from different medical institutions. Federated learning aims to train a shared model of isolated clients without local data exchange which aligns well with the scarcity and privacy characteristics of medical data. To solve the problem of labeling hard, many advanced semi-supervised methods have been proposed in a centralized data setting. As for federated learning, how to conduct semi-supervised learning under this distributed scenario is worth investigating. In this work, we propose a novel federated semi-supervised learning framework for medical image segmentation. The intra-client and inter-client consistency learning are introduced to smooth predictions at the data level and avoid confirmation bias of local models. They are achieved with the assistance of a Variational Autoencoder (VAE) trained collaboratively by clients. The added VAE model plays three roles: 1) extracting latent low-dimensional features of all labeled and unlabeled data; 2) performing a novel type of data augmentation in calculating intra-client consistency loss; 3) utilizing the generative ability of itself to conduct inter-client consistency distillation. The proposed framework is compared with other federated semi-supervised or self-supervised learning methods. The experimental results illustrate that our method outperforms the state-of-the-art method while avoiding a lot of computation and communication overhead.
Related papers
- Rethinking Semi-Supervised Federated Learning: How to co-train
fully-labeled and fully-unlabeled client imaging data [6.322831694506287]
Isolated Federated Learning (IsoFed) is a learning scheme specifically designed for semi-supervised federated learning (SSFL)
We propose a novel learning scheme specifically designed for SSFL that circumvents the problem by avoiding simple averaging of supervised and semi-supervised models together.
In particular, our training approach consists of two parts - (a) isolated aggregation of labeled and unlabeled client models, and (b) local self-supervised pretraining of isolated global models in all clients.
arXiv Detail & Related papers (2023-10-28T20:41:41Z) - A Client-server Deep Federated Learning for Cross-domain Surgical Image
Segmentation [18.402074964118697]
This paper presents a solution to the cross-domain adaptation problem for 2D surgical image segmentation.
Deep learning architectures in medical image analysis necessitate extensive training data for better generalization.
We propose a Client-server deep federated architecture for cross-domain adaptation.
arXiv Detail & Related papers (2023-06-14T19:49:47Z) - Mine yOur owN Anatomy: Revisiting Medical Image Segmentation with Extremely Limited Labels [54.58539616385138]
We introduce a novel semi-supervised 2D medical image segmentation framework termed Mine yOur owN Anatomy (MONA)
First, prior work argues that every pixel equally matters to the model training; we observe empirically that this alone is unlikely to define meaningful anatomical features.
Second, we construct a set of objectives that encourage the model to be capable of decomposing medical images into a collection of anatomical features.
arXiv Detail & Related papers (2022-09-27T15:50:31Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Study of the performance and scalability of federated learning for
medical imaging with intermittent clients [0.0]
Federated learning is a data decentralization privacy-preserving technique used to perform machine or deep learning in a secure way.
Use case of medical image analysis is proposed, using chest X-ray images obtained from an open data repository.
Different clients will be simulated from the training data, selected in an unbalanced manner, they do not all have the same number of data.
Two approaches to follow will be analyzed in the case of intermittent clients, as in a real scenario some clients may leave the training, and some new ones may enter the training.
arXiv Detail & Related papers (2022-07-18T13:18:34Z) - Closing the Generalization Gap of Cross-silo Federated Medical Image
Segmentation [66.44449514373746]
Cross-silo federated learning (FL) has attracted much attention in medical imaging analysis with deep learning in recent years.
There can be a gap between the model trained from FL and one from centralized training.
We propose a novel training framework FedSM to avoid client issue and successfully close the drift gap.
arXiv Detail & Related papers (2022-03-18T19:50:07Z) - Federated Semi-supervised Medical Image Classification via Inter-client
Relation Matching [58.26619456972598]
Federated learning (FL) has emerged with increasing popularity to collaborate distributed medical institutions for training deep networks.
This paper studies a practical yet challenging FL problem, named textitFederated Semi-supervised Learning (FSSL)
We present a novel approach for this problem, which improves over traditional consistency regularization mechanism with a new inter-client relation matching scheme.
arXiv Detail & Related papers (2021-06-16T07:58:00Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Uncertainty-aware multi-view co-training for semi-supervised medical
image segmentation and domain adaptation [35.33425093398756]
Unlabeled data is much easier to acquire than well-annotated data.
We propose uncertainty-aware multi-view co-training for medical image segmentation.
Our framework is capable of efficiently utilizing unlabeled data for better performance.
arXiv Detail & Related papers (2020-06-28T22:04:54Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.