論文の概要: Bilevel Hypergraph Networks for Multi-Modal Alzheimer's Diagnosis
- arxiv url: http://arxiv.org/abs/2403.12719v1
- Date: Tue, 19 Mar 2024 13:28:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 14:13:49.799158
- Title: Bilevel Hypergraph Networks for Multi-Modal Alzheimer's Diagnosis
- Title(参考訳): マルチモードアルツハイマー診断のためのバイレベルハイパーグラフネットワーク
- Authors: Angelica I. Aviles-Rivero, Chun-Wun Cheng, Zhongying Deng, Zoe Kourtzi, Carola-Bibiane Schönlieb,
- Abstract要約: アルツハイマー病の前段階の早期発見は、患者の予後と生活の質を高めるのに不可欠である。
最小限のラベルを用いてマルチモーダルデータ間の高次関係を実現するための新しいハイパーグラフフレームワークを提案する。
以上の結果から,アルツハイマー病の診断における現在の治療法よりも,我々の枠組みが優れていることが示唆された。
- 参考スコア(独自算出の注目度): 12.42019222822497
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Early detection of Alzheimer's disease's precursor stages is imperative for significantly enhancing patient outcomes and quality of life. This challenge is tackled through a semi-supervised multi-modal diagnosis framework. In particular, we introduce a new hypergraph framework that enables higher-order relations between multi-modal data, while utilising minimal labels. We first introduce a bilevel hypergraph optimisation framework that jointly learns a graph augmentation policy and a semi-supervised classifier. This dual learning strategy is hypothesised to enhance the robustness and generalisation capabilities of the model by fostering new pathways for information propagation. Secondly, we introduce a novel strategy for generating pseudo-labels more effectively via a gradient-driven flow. Our experimental results demonstrate the superior performance of our framework over current techniques in diagnosing Alzheimer's disease.
- Abstract(参考訳): アルツハイマー病の前段階の早期発見は、患者の予後と生活の質を著しく向上させるのに不可欠である。
この課題は、半教師付きマルチモーダル診断フレームワークによって解決される。
特に,マルチモーダルデータ間の高次関係を実現するためのハイパーグラフフレームワークを提案する。
まず,グラフ拡張ポリシーと半教師付き分類器を共同で学習するバイレベルハイパーグラフ最適化フレームワークを提案する。
この二重学習戦略は、情報伝達のための新しい経路を育み、モデルの堅牢性と一般化能力を高めるために仮説を立てる。
第2に,勾配駆動流によりより効果的に擬似ラベルを生成するための新しい戦略を導入する。
以上の結果から,アルツハイマー病の診断における現在の治療法よりも,我々の枠組みが優れていることが示唆された。
関連論文リスト
- Classification of developmental and brain disorders via graph
convolutional aggregation [6.6356049194991815]
本稿では,グラフサンプリングにおける集約を利用したアグリゲータ正規化グラフ畳み込みネットワークを提案する。
提案モデルは,画像特徴と非画像特徴の両方をグラフノードとエッジに組み込むことで,識別グラフノード表現を学習する。
我々は、自閉症脳画像データ交換(ABIDE)とアルツハイマー病神経イメージングイニシアチブ(ADNI)という2つの大きなデータセット上の最近のベースライン手法と比較して、我々のモデルをベンチマークした。
論文 参考訳(メタデータ) (2023-11-13T14:36:29Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
深層学習モデルは、自動的にMS病変を分節する約束を示しているが、正確な注釈付きデータの不足は、この分野の進歩を妨げている。
我々は,MS病変の不均衡分布とファジィ境界を考慮したDecoupled Hard Label Correction(DHLC)戦略を導入する。
また,集約型中央モデルを利用したCELC(Centrally Enhanced Label Correction)戦略も導入した。
論文 参考訳(メタデータ) (2023-08-31T00:36:10Z) - HGIB: Prognosis for Alzheimer's Disease via Hypergraph Information
Bottleneck [3.8988556182958005]
情報ボトルネック戦略(HGIB)に基づく新しいハイパーグラフフレームワークを提案する。
本フレームワークは,無関係な情報を識別することを目的としており,今後のMCI変換予測のための関連情報の調和にのみ焦点をあてている。
我々は、ADNIに関する広範な実験を通じて、提案したHGIBフレームワークが、アルツハイマー病予後のための既存の最先端ハイパーグラフニューラルネットワークより優れていることを実証した。
論文 参考訳(メタデータ) (2023-03-18T10:53:43Z) - Dynamic Graph Enhanced Contrastive Learning for Chest X-ray Report
Generation [92.73584302508907]
コントラスト学習を用いた医療レポート作成を支援するために,動的構造とノードを持つ知識グラフを提案する。
詳しくは、グラフの基本構造は一般知識から事前構築される。
各イメージ機能は、レポート生成のためにデコーダモジュールに入力する前に、独自の更新グラフに統合される。
論文 参考訳(メタデータ) (2023-03-18T03:53:43Z) - Deep Grading based on Collective Artificial Intelligence for AD
Diagnosis and Prognosis [0.0]
アルツハイマー病の診断と予後を自動化するための新しい枠組みを提案する。
フレームワークは2つの段階から構成される。第1段階では,意味のある特徴を抽出するための深い階調モデルを提案する。
第2段階では、ADシグネチャをよりよくキャプチャするために、グラフ畳み込みニューラルネットワークを使用します。
論文 参考訳(メタデータ) (2022-11-28T09:59:08Z) - Augmentations in Hypergraph Contrastive Learning: Fabricated and
Generative [126.0985540285981]
我々は、ハイパーグラフニューラルネットワークの一般化性を改善するために、画像/グラフからの対照的な学習アプローチ(ハイパーGCLと呼ぶ)を適用する。
我々は、高次関係を符号化したハイパーエッジを増大させる2つのスキームを作成し、グラフ構造化データから3つの拡張戦略を採用する。
拡張ビューを生成するためのハイパーグラフ生成モデルを提案し、次に、ハイパーグラフ拡張とモデルパラメータを協調的に学習するエンド・ツー・エンドの微分可能なパイプラインを提案する。
論文 参考訳(メタデータ) (2022-10-07T20:12:20Z) - Multi-Modal Hypergraph Diffusion Network with Dual Prior for Alzheimer
Classification [4.179845212740817]
アルツハイマー病診断のための新しい半教師付きハイパーグラフ学習フレームワークを提案する。
本フレームワークは,マルチモーダル画像と非画像データ間の高次関係を実現する。
我々は、我々の実験を通して、我々のフレームワークがアルツハイマー病診断の現在の技術より優れていることを実証した。
論文 参考訳(メタデータ) (2022-04-04T10:31:42Z) - Multimodal Representations Learning and Adversarial Hypergraph Fusion
for Early Alzheimer's Disease Prediction [30.99183477161096]
本稿では,アルツハイマー病診断のための新しい表現学習と逆向きハイパーグラフ融合フレームワークを提案する。
本モデルは、他の関連モデルと比較して、アルツハイマー病の検出において優れた性能を発揮する。
論文 参考訳(メタデータ) (2021-07-21T08:08:05Z) - Graph-Evolving Meta-Learning for Low-Resource Medical Dialogue
Generation [150.52617238140868]
ソース疾患からターゲット疾患へ診断経験を移すために、低リソースの医療対話生成を提案します。
また,新しい疾患の症状相関を推論するためのコモンセンスグラフの進化を学習するグラフ進化メタラーニングフレームワークを開発した。
論文 参考訳(メタデータ) (2020-12-22T13:20:23Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
アルツハイマー病(AD)に関連する機能的脳ネットワークの微妙な変化を特徴付けることは、疾患進行の早期診断と予測に重要である。
我々は、多重グラフガウス埋め込みモデル(MG2G)と呼ばれる新しいディープラーニング手法を開発した。
我々はMG2Gを用いて、MEG脳ネットワークの内在性潜在性次元を検出し、軽度認知障害(MCI)患者のADへの進行を予測し、MCIに関連するネットワーク変化を伴う脳領域を同定した。
論文 参考訳(メタデータ) (2020-05-08T02:29:24Z) - Hierarchical Reinforcement Learning for Automatic Disease Diagnosis [52.111516253474285]
政策学習のための対話システムに2段階の階層的な政策構造を統合することを提案する。
提案した政策構造は,多くの疾患や症状を含む診断問題に対処することができる。
論文 参考訳(メタデータ) (2020-04-29T15:02:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。