論文の概要: Deep Grading based on Collective Artificial Intelligence for AD
Diagnosis and Prognosis
- arxiv url: http://arxiv.org/abs/2211.15192v1
- Date: Mon, 28 Nov 2022 09:59:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-29 20:17:13.455621
- Title: Deep Grading based on Collective Artificial Intelligence for AD
Diagnosis and Prognosis
- Title(参考訳): AD診断と予後のための集団人工知能に基づくディープグレーディング
- Authors: Huy-Dung Nguyen, Micha\"el Cl\'ement, Boris Mansencal, and Pierrick
Coup\'e
- Abstract要約: アルツハイマー病の診断と予後を自動化するための新しい枠組みを提案する。
フレームワークは2つの段階から構成される。第1段階では,意味のある特徴を抽出するための深い階調モデルを提案する。
第2段階では、ADシグネチャをよりよくキャプチャするために、グラフ畳み込みニューラルネットワークを使用します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate diagnosis and prognosis of Alzheimer's disease are crucial to
develop new therapies and reduce the associated costs. Recently, with the
advances of convolutional neural networks, methods have been proposed to
automate these two tasks using structural MRI. However, these methods often
suffer from lack of interpretability, generalization, and can be limited in
terms of performance. In this paper, we propose a novel deep framework designed
to overcome these limitations. Our framework consists of two stages. In the
first stage, we propose a deep grading model to extract meaningful features. To
enhance the robustness of these features against domain shift, we introduce an
innovative collective artificial intelligence strategy for training and
evaluating steps. In the second stage, we use a graph convolutional neural
network to better capture AD signatures. Our experiments based on 2074 subjects
show the competitive performance of our deep framework compared to
state-of-the-art methods on different datasets for both AD diagnosis and
prognosis.
- Abstract(参考訳): アルツハイマー病の正確な診断と予後は、新しい治療法の開発と関連するコストの削減に不可欠である。
近年,畳み込みニューラルネットワークの進歩に伴い,この2つのタスクを構造MRIを用いて自動化する方法が提案されている。
しかし、これらの手法はしばしば解釈可能性や一般化の欠如に苦しめられ、性能の面で制限されることがある。
本稿では,これらの制約を克服する新しい深層フレームワークを提案する。
私たちの枠組みは2つの段階からなる。
最初の段階では,意味のある特徴を抽出するディープグレーディングモデルを提案する。
ドメインシフトに対するこれらの特徴の堅牢性を高めるため、トレーニングと評価のための革新的な集合人工知能戦略を導入する。
第2段階では、ADシグネチャをよりよくキャプチャするために、グラフ畳み込みニューラルネットワークを使用します。
本研究は2074年を対象とし,AD診断と予後の両面で異なるデータセットにおける最先端の手法と比較した。
関連論文リスト
- Bilevel Hypergraph Networks for Multi-Modal Alzheimer's Diagnosis [12.42019222822497]
アルツハイマー病の前段階の早期発見は、患者の予後と生活の質を高めるのに不可欠である。
最小限のラベルを用いてマルチモーダルデータ間の高次関係を実現するための新しいハイパーグラフフレームワークを提案する。
以上の結果から,アルツハイマー病の診断における現在の治療法よりも,我々の枠組みが優れていることが示唆された。
論文 参考訳(メタデータ) (2024-03-19T13:28:03Z) - HGIB: Prognosis for Alzheimer's Disease via Hypergraph Information
Bottleneck [3.8988556182958005]
情報ボトルネック戦略(HGIB)に基づく新しいハイパーグラフフレームワークを提案する。
本フレームワークは,無関係な情報を識別することを目的としており,今後のMCI変換予測のための関連情報の調和にのみ焦点をあてている。
我々は、ADNIに関する広範な実験を通じて、提案したHGIBフレームワークが、アルツハイマー病予後のための既存の最先端ハイパーグラフニューラルネットワークより優れていることを実証した。
論文 参考訳(メタデータ) (2023-03-18T10:53:43Z) - Exploring linguistic feature and model combination for speech
recognition based automatic AD detection [61.91708957996086]
音声ベースの自動ADスクリーニングシステムは、他の臨床スクリーニング技術に代わる非侵襲的でスケーラブルな代替手段を提供する。
専門的なデータの収集は、そのようなシステムを開発する際に、モデル選択と特徴学習の両方に不確実性をもたらす。
本稿では,BERT と Roberta の事前学習したテキストエンコーダのドメイン微調整の堅牢性向上のための特徴とモデルの組み合わせ手法について検討する。
論文 参考訳(メタデータ) (2022-06-28T05:09:01Z) - Towards better Interpretable and Generalizable AD detection using
Collective Artificial Intelligence [0.0]
アルツハイマー病の診断と予後を自動化するための深層学習法が提案されている。
これらの手法は、しばしば解釈可能性と一般化の欠如に悩まされる。
我々はこれらの制限を克服するために設計された新しいディープ・フレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-07T13:02:53Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
医用超音波画像は、信頼性と解釈可能な画像再構成を提供するために、高品質な信号処理に大きく依存している。
データ駆動方式で最適化されたディープラーニングベースの手法が人気を集めている。
比較的新しいパラダイムは、データ駆動型ディープラーニングの活用とドメイン知識の活用という2つのパワーを組み合わせたものだ。
論文 参考訳(メタデータ) (2022-04-09T13:04:36Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
本稿では,キュウリ葉の粉状ミドウを自動的に認識する深層学習手法を提案する。
マルチスペクトルイメージングデータに適用した教師なし深層学習技術に焦点をあてる。
本稿では, オートエンコーダアーキテクチャを用いて, 疾患検出のための2つの手法を提案する。
論文 参考訳(メタデータ) (2021-12-20T13:29:13Z) - An explainable two-dimensional single model deep learning approach for
Alzheimer's disease diagnosis and brain atrophy localization [3.9281410693767036]
本稿では、アルツハイマー病(AD)の自動診断と、sMRIデータから、この疾患に関連する重要な脳領域の局所化について、エンドツーエンドのディープラーニングアプローチを提案する。
提案手法は,AD対認知正常(CN)とプログレッシブMCI(pMCI)と安定MCI(sMCI)の2つの分類タスクに対して,パブリックアクセス可能な2つのデータセットで評価されている。
実験結果から,本手法はマルチモデルや3次元CNN手法など,最先端の手法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2021-07-28T07:19:00Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - Learning Binary Semantic Embedding for Histology Image Classification
and Retrieval [56.34863511025423]
バイナリ・セマンティック・エンベディング(LBSE)の学習方法を提案する。
効率的な埋め込み、分類、検索を行い、組織像の解釈可能なコンピュータ支援診断を提供する。
3つのベンチマークデータセットで実施された実験は、様々なシナリオにおいてLBSEの優位性を検証する。
論文 参考訳(メタデータ) (2020-10-07T08:36:44Z) - An Explainable 3D Residual Self-Attention Deep Neural Network FOR Joint
Atrophy Localization and Alzheimer's Disease Diagnosis using Structural MRI [22.34325971680329]
我々は,3D Residual Attention Deep Neural Network(3D ResAttNet)を導入し,SMRIスキャンによるエンドツーエンド学習によるアルツハイマー病早期診断のためのコンピュータ支援手法を提案する。
実験結果から,提案手法は精度と一般化性の観点から,最先端モデルに対して競争上の優位性があることが示唆された。
論文 参考訳(メタデータ) (2020-08-10T11:08:55Z) - Hierarchical Reinforcement Learning for Automatic Disease Diagnosis [52.111516253474285]
政策学習のための対話システムに2段階の階層的な政策構造を統合することを提案する。
提案した政策構造は,多くの疾患や症状を含む診断問題に対処することができる。
論文 参考訳(メタデータ) (2020-04-29T15:02:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。