論文の概要: Posterior Uncertainty Quantification in Neural Networks using Data Augmentation
- arxiv url: http://arxiv.org/abs/2403.12729v1
- Date: Mon, 18 Mar 2024 17:46:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 14:03:59.015298
- Title: Posterior Uncertainty Quantification in Neural Networks using Data Augmentation
- Title(参考訳): データ拡張によるニューラルネットワークの後方不確かさの定量化
- Authors: Luhuan Wu, Sinead Williamson,
- Abstract要約: 深層アンサンブルは,既存の観測結果にのみ,将来のデータがサポートされることを前提として,基本的に不特定モデルクラスであることを示す。
一般的なデータ拡張手法を用いて,より現実的な予測分布を構築する手法であるMixupMPを提案する。
実験により,MixupMPは様々な画像分類データセットにおいて,優れた予測性能と不確かさの定量化を実現することが示された。
- 参考スコア(独自算出の注目度): 3.9860047080844807
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we approach the problem of uncertainty quantification in deep learning through a predictive framework, which captures uncertainty in model parameters by specifying our assumptions about the predictive distribution of unseen future data. Under this view, we show that deep ensembling (Lakshminarayanan et al., 2017) is a fundamentally mis-specified model class, since it assumes that future data are supported on existing observations only -- a situation rarely encountered in practice. To address this limitation, we propose MixupMP, a method that constructs a more realistic predictive distribution using popular data augmentation techniques. MixupMP operates as a drop-in replacement for deep ensembles, where each ensemble member is trained on a random simulation from this predictive distribution. Grounded in the recently-proposed framework of Martingale posteriors (Fong et al., 2023), MixupMP returns samples from an implicitly defined Bayesian posterior. Our empirical analysis showcases that MixupMP achieves superior predictive performance and uncertainty quantification on various image classification datasets, when compared with existing Bayesian and non-Bayesian approaches.
- Abstract(参考訳): 本稿では,予測フレームワークを通じてディープラーニングにおける不確実性定量化の問題にアプローチし,予測できない将来のデータの予測分布に関する仮定を定め,モデルパラメータの不確かさを捉える。
この観点から、深層化(Lakshminarayanan et al , 2017)は、将来のデータが既存の観測でのみサポートされることを前提に、基本的に誤った仕様のモデルクラスであることを示す。
この制限に対処するため,一般的なデータ拡張手法を用いて,より現実的な予測分布を構築する手法であるMixupMPを提案する。
MixupMPは深層アンサンブルの代替として機能し、各アンサンブルメンバーはこの予測分布からランダムなシミュレーションに基づいて訓練される。
最近提案されたマーティンゲイル後部の枠組み(Fong et al , 2023)に基づいて、MixupMPは暗黙的に定義されたベイズ後部のサンプルを返す。
実験により,MixupMPは既存のベイズ的手法や非ベイズ的手法と比較して,様々な画像分類データセットにおいて優れた予測性能と不確かさの定量化を実現していることが示された。
関連論文リスト
- When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2023-10-17T20:30:16Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
本稿では,データあいまいさの予測不確実性を推定するためのポストホックサンプリング手法を提案する。
この方法は与えられた入力に対して異なる可算出力を生成することができ、予測分布のパラメトリック形式を仮定しない。
論文 参考訳(メタデータ) (2023-08-03T12:43:21Z) - Distribution-Free Finite-Sample Guarantees and Split Conformal
Prediction [0.0]
分割共形予測は、最小分布自由仮定の下で有限サンプル保証を得るための有望な道を表す。
1940年代に開発された分割共形予測と古典的寛容予測との関連性を強調した。
論文 参考訳(メタデータ) (2022-10-26T14:12:24Z) - A general framework for multi-step ahead adaptive conformal
heteroscedastic time series forecasting [0.0]
本稿では,適応アンサンブルバッチ多出力多出力共形量子化回帰(AEnbMIMOCQR)と呼ばれる新しいモデル非依存アルゴリズムを提案する。
これにより、予測者は、固定された特定された誤発見率に対して、分布のない方法で、複数段階の事前予測間隔を生成できる。
本手法は, 整合予測の原理に基づいているが, データの分割は不要であり, データの交換ができない場合でも, ほぼ正確なカバレッジを提供する。
論文 参考訳(メタデータ) (2022-07-28T16:40:26Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2022-06-16T06:13:53Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - Distribution Preserving Multiple Hypotheses Prediction for Uncertainty
Modeling [0.0]
本稿では,複数の仮説予測手法を保存するための代替的損失を提案する。
実験により,本手法は,合成および実世界の動き予測データセット上でより代表的な仮説を導出することを示す。
提案手法の出力は, サンプリングに基づくモンテカルロ法で直接利用することができる。
論文 参考訳(メタデータ) (2021-10-06T15:36:17Z) - A Hierarchical Variational Neural Uncertainty Model for Stochastic Video
Prediction [45.6432265855424]
本稿では,モデルの予測不確かさの原理的定量化であるニューラル不確実性量化器(NUQ)を紹介する。
提案するフレームワークは,最先端モデルと比較して効果的に訓練する。
論文 参考訳(メタデータ) (2021-10-06T00:25:22Z) - CovarianceNet: Conditional Generative Model for Correct Covariance
Prediction in Human Motion Prediction [71.31516599226606]
本稿では,将来の軌道の予測分布に関連する不確かさを正確に予測する手法を提案する。
我々のアプローチであるCovariaceNetは、ガウス潜在変数を持つ条件付き生成モデルに基づいている。
論文 参考訳(メタデータ) (2021-09-07T09:38:24Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。