論文の概要: Is open source software culture enough to make AI a common ?
- arxiv url: http://arxiv.org/abs/2403.12774v1
- Date: Tue, 19 Mar 2024 14:43:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 13:53:54.724476
- Title: Is open source software culture enough to make AI a common ?
- Title(参考訳): オープンソースソフトウェア文化はAIを共通のものにするのに十分なのだろうか?
- Authors: Robin Quillivic, Salma Mesmoudi,
- Abstract要約: 言語モデル(LM)は人工知能(AI)の分野でますます普及している
この疑問は、ユーザコミュニティによって管理され、維持される共通のリソースであるかどうかというものである。
LMを作成するのに必要なデータとリソースをコモンズとして扱うことの潜在的な利点を強調します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Language models (LM or LLM) are increasingly deployed in the field of artificial intelligence (AI) and its applications, but the question arises as to whether they can be a common resource managed and maintained by a community of users. Indeed, the dominance of private companies with exclusive access to massive data and language processing resources can create inequalities and biases in LM, as well as obstacles to innovation for those who do not have the same resources necessary for their implementation. In this contribution, we examine the concept of the commons and its relevance for thinking about LM. We highlight the potential benefits of treating the data and resources needed to create LMs as commons, including increased accessibility, equity, and transparency in the development and use of AI technologies. Finally, we present a case study centered on the Hugging Face platform, an open-source platform for deep learning designed to encourage collaboration and sharing among AI designers.
- Abstract(参考訳): 言語モデル(LMまたはLLM)は、人工知能(AI)とその応用分野にますます導入されているが、ユーザコミュニティによって管理され、維持される共通のリソースであるかどうかという疑問が浮かび上がっている。
実際、大量のデータや言語処理リソースに排他的にアクセスする民間企業の優位性は、LMの不平等や偏見を生じさせ、また、その実装に必要なリソースが同じでない人にとってはイノベーションの障害となる。
本稿では,コモンズの概念とLMの考え方との関連性について考察する。
我々は、AIテクノロジの開発と利用におけるアクセシビリティ、エクイティ、透明性の向上など、LMを共通として作成するために必要なデータとリソースを扱う潜在的なメリットを強調します。
最後に、AIデザイナ間のコラボレーションと共有を促進するために設計されたディープラーニングのためのオープンソースのプラットフォームであるHugging Faceプラットフォームを中心にしたケーススタディを示す。
関連論文リスト
- A Comprehensive Survey on Joint Resource Allocation Strategies in Federated Edge Learning [9.806901443019008]
Federated Edge Learning (FEL)は、分散環境でのモデルトレーニングを可能にすると同時に、ユーザデータの物理的分離を利用することで、ユーザのプライバシを確保する。
IoT(Internet of Things)やSmart Earthといった複雑なアプリケーションシナリオの開発により、従来のリソース割り当てスキームは、これらの増大する計算および通信要求を効果的にサポートすることができなくなった。
本稿では,複数の資源需要が増大する中で,計算と通信の多面的課題を体系的に解決する。
論文 参考訳(メタデータ) (2024-10-10T13:02:00Z) - Large Language Models for Base Station Siting: Intelligent Deployment based on Prompt or Agent [62.16747639440893]
大規模言語モデル(LLM)とその関連技術は、特に迅速な工学とエージェント工学の領域において進歩している。
このアプローチは、人間の経験と知識をこれらの洗練されたLLMに注入するために、巧妙なプロンプトの戦略的利用を必要とする。
この統合は、サービスとしての人工知能(AI)と、より容易なAIの将来のパラダイムを表している。
論文 参考訳(メタデータ) (2024-08-07T08:43:32Z) - The Impossibility of Fair LLMs [59.424918263776284]
大規模言語モデル(LLM)の時代において、公正なAIの必要性はますます明確になっている。
我々は、機械学習研究者が公正性を評価するために使った技術フレームワークについてレビューする。
我々は、特定のユースケースにおける公平性を達成するためのより現実的な目標のためのガイドラインを策定する。
論文 参考訳(メタデータ) (2024-05-28T04:36:15Z) - Open-Source AI-based SE Tools: Opportunities and Challenges of Collaborative Software Learning [23.395624804517034]
大規模言語モデル(LLM)は、ソフトウェア工学(SE)タスクの進展に役立っている。
これらのAIベースのSEモデルのコラボレーションは、高品質なデータソースの最大化に重点を置いている。
特に高品質のデータは、しばしば商業的または機密性の高い価値を持ち、オープンソースAIベースのSEプロジェクトではアクセスできない。
論文 参考訳(メタデータ) (2024-04-09T10:47:02Z) - Rethinking Machine Unlearning for Large Language Models [85.92660644100582]
大規模言語モデル(LLM)の領域における機械学習の研究
このイニシアチブは、望ましくないデータの影響(機密情報や違法情報など)と関連するモデル機能を排除することを目的としている。
論文 参考訳(メタデータ) (2024-02-13T20:51:58Z) - Private Knowledge Sharing in Distributed Learning: A Survey [50.51431815732716]
人工知能の台頭は多くの産業に革命をもたらし、社会の働き方を変えた。
異なるエンティティが分散または所有する学習プロセスにおいて、情報を活用することが不可欠である。
現代のデータ駆動サービスは、分散知識エンティティを結果に統合するために開発されています。
論文 参考訳(メタデータ) (2024-02-08T07:18:23Z) - BC4LLM: Trusted Artificial Intelligence When Blockchain Meets Large
Language Models [6.867309936992639]
大規模言語モデル(LLM)は、AIGC(AIGC)という形で人々にサービスを提供する。
AIGC学習データの信頼性と信頼性を保証することは困難である。
分散AIトレーニングには、プライバシ開示の危険性も隠されている。
論文 参考訳(メタデータ) (2023-10-10T03:18:26Z) - OpenAGI: When LLM Meets Domain Experts [51.86179657467822]
ヒューマン・インテリジェンス(HI)は、複雑なタスクを解くための基本的なスキルの組み合わせに長けている。
この機能は人工知能(AI)にとって不可欠であり、包括的なAIエージェントに組み込まれるべきである。
マルチステップで現実的なタスクを解決するために設計されたオープンソースのプラットフォームであるOpenAGIを紹介します。
論文 参考訳(メタデータ) (2023-04-10T03:55:35Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
人間中心のアプローチでAIアプリケーションを開発する必要性には、ある程度のコンセンサスがある。
i)ユーティリティと社会的善、(ii)プライバシとデータ所有、(iii)透明性と説明責任、(iv)AIによる意思決定プロセスの公正性。
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
論文 参考訳(メタデータ) (2023-02-13T16:44:44Z) - Fed-DART and FACT: A solution for Federated Learning in a production
environment [0.30586855806896046]
分散人工知能(AI)ソリューションは、産業応用における様々な問題を解決する。
実際のビジネスインパクトを生み出すためにAIを本番環境に持ち込むことは、難しい作業です。
我々はFed-DARTに基づくFACTフレームワークを開発した。
論文 参考訳(メタデータ) (2022-05-23T12:32:38Z) - Developing Open Source Educational Resources for Machine Learning and
Data Science [0.0]
機械学習(ML)とデータサイエンス(DS)におけるオープン教育資源(OER)の具体的要件について述べる。
オープンソース教育資源(OSER)に繋がるソースファイルを公開することが,これらの分野にとって特に重要である,と我々は主張する。
我々は、OSERがブレンドラーニングのシナリオにどのように使えるのかを概説し、大学教育における私たちの経験を共有する。
論文 参考訳(メタデータ) (2021-07-28T10:20:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。