論文の概要: MELTing point: Mobile Evaluation of Language Transformers
- arxiv url: http://arxiv.org/abs/2403.12844v2
- Date: Wed, 20 Mar 2024 09:06:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-21 13:39:48.327018
- Title: MELTing point: Mobile Evaluation of Language Transformers
- Title(参考訳): MELTing Point: 言語変換器のモバイル評価
- Authors: Stefanos Laskaridis, Kleomenis Katevas, Lorenzo Minto, Hamed Haddadi,
- Abstract要約: 大規模言語モデル(LLM)のモバイル実行の現状について検討する。
我々は,デバイス上でのLLMのヘッドレス実行とベンチマークをサポートする,独自の自動化インフラストラクチャMELTを開発した。
我々は、一般的な命令の微調整 LLM を評価し、それぞれのフレームワークを用いてエンドツーエンドおよび粒度の性能を計測する。
- 参考スコア(独自算出の注目度): 8.238355633015068
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transformers have revolutionized the machine learning landscape, gradually making their way into everyday tasks and equipping our computers with ``sparks of intelligence''. However, their runtime requirements have prevented them from being broadly deployed on mobile. As personal devices become increasingly powerful and prompt privacy becomes an ever more pressing issue, we explore the current state of mobile execution of Large Language Models (LLMs). To achieve this, we have created our own automation infrastructure, MELT, which supports the headless execution and benchmarking of LLMs on device, supporting different models, devices and frameworks, including Android, iOS and Nvidia Jetson devices. We evaluate popular instruction fine-tuned LLMs and leverage different frameworks to measure their end-to-end and granular performance, tracing their memory and energy requirements along the way. Our analysis is the first systematic study of on-device LLM execution, quantifying performance, energy efficiency and accuracy across various state-of-the-art models and showcases the state of on-device intelligence in the era of hyperscale models. Results highlight the performance heterogeneity across targets and corroborates that LLM inference is largely memory-bound. Quantization drastically reduces memory requirements and renders execution viable, but at a non-negligible accuracy cost. Drawing from its energy footprint and thermal behavior, the continuous execution of LLMs remains elusive, as both factors negatively affect user experience. Last, our experience shows that the ecosystem is still in its infancy, and algorithmic as well as hardware breakthroughs can significantly shift the execution cost. We expect NPU acceleration, and framework-hardware co-design to be the biggest bet towards efficient standalone execution, with the alternative of offloading tailored towards edge deployments.
- Abstract(参考訳): トランスフォーマーは機械学習の環境に革命をもたらし、日々のタスクに徐々に入り込み、コンピュータに‘知性のスパーク’を持たせた。
しかし、彼らのランタイム要件は、モバイルに広くデプロイされることを妨げている。
パーソナルデバイスがますます強力になり、プライバシーがますます厳しい問題になるにつれて、我々はLarge Language Models(LLMs)のモバイル実行の現状を探る。
これを実現するために、私たちは独自の自動化インフラストラクチャMELTを開発しました。デバイス上でのLLMのヘッドレス実行とベンチマークをサポートし、Android、iOS、Nvidia Jetsonデバイスを含むさまざまなモデル、デバイス、フレームワークをサポートします。
我々は、一般的な命令の微調整 LLM を評価し、様々なフレームワークを活用して、エンド・ツー・エンドとグラニュラルのパフォーマンスを測定し、その過程でのメモリとエネルギーの要求をトレースする。
我々の分析は、デバイス上でのLCMの実行、性能、エネルギー効率、精度を様々な最先端モデルで定量化し、ハイパースケールモデルの時代におけるデバイス上でのインテリジェンスの現状を示す最初の体系的な研究である。
結果は、ターゲット間のパフォーマンスの不均一性を強調し、LLM推論が主にメモリバウンドであることを裏付ける。
量子化はメモリ要求を大幅に削減し、実行を実行可能なものにするが、無視できない精度のコストで実行する。
エネルギーフットプリントと熱的挙動から導かれると、両方の要因がユーザ体験に悪影響を及ぼすため、LLMの継続的な実行はいまだ解明されていない。
最後に、私たちの経験から、エコシステムはまだ初期段階であり、アルゴリズムとハードウェアのブレークスルーは実行コストを大きくシフトさせる可能性があることが示されています。
NPUアクセラレーションとフレームワークのハードウエアの共同設計が、エッジデプロイメントに適したオフロードの代替として、効率的なスタンドアロン実行への最大の賭けになることを期待しています。
関連論文リスト
- DeeR-VLA: Dynamic Inference of Multimodal Large Language Models for Efficient Robot Execution [114.61347672265076]
実世界のロボットのためのMLLMの開発は、ロボットプラットフォームで利用可能な計算能力とメモリ容量が典型的に限られているため、難しい。
活性化MLLMのサイズを自動的に調整するロボットビジョンランゲージ・アクション・モデル(DeeR)の動的早期実行フレームワークを提案する。
DeeR は LLM の計算コストを 5.2-6.5x に削減し、GPU のメモリを 2-6x に削減した。
論文 参考訳(メタデータ) (2024-11-04T18:26:08Z) - PalmBench: A Comprehensive Benchmark of Compressed Large Language Models on Mobile Platforms [11.87161637895978]
ユーザがモバイルデバイス上で大きな言語モデルを評価することができる軽量でオールインワンな自動ベンチマークフレームワークを紹介します。
ハードウェア能力の異なる複数のモバイルプラットフォームに対して、様々な量子化構成(重みとアクティベーションの両方)の異なる様々な人気のあるLCMのベンチマークを提供する。
論文 参考訳(メタデータ) (2024-10-05T03:37:07Z) - Large Language Model Performance Benchmarking on Mobile Platforms: A Thorough Evaluation [10.817783356090027]
大規模言語モデル(LLM)は、私たちの仕事や日常生活のあらゆる側面にますます統合されています。
ユーザのプライバシに関する懸念が高まり、これらのモデルがローカルに展開される傾向が強まっている。
急速に普及しているアプリケーションとして、市販のモバイルデバイスのパフォーマンスを懸念しています。
論文 参考訳(メタデータ) (2024-10-04T17:14:59Z) - Resource Allocation for Stable LLM Training in Mobile Edge Computing [11.366306689957353]
本稿では,モバイルユーザとエッジサーバを統合し,リソース割り当てを最適化する協調トレーニングフレームワークについて検討する。
学習中のエネルギー消費と遅延の総量を最小限に抑えるために,多目的最適化問題を定式化する。
また,モデルの安定性向上を目的関数に組み込むことにより,モデル性能の不安定性の共通問題にも対処する。
論文 参考訳(メタデータ) (2024-09-30T12:36:27Z) - MobileAIBench: Benchmarking LLMs and LMMs for On-Device Use Cases [81.70591346986582]
モバイル端末上でのLarge Language Models(LLM)とLarge Multimodal Models(LMM)を評価するためのベンチマークフレームワークであるMobileAIBenchを紹介する。
MobileAIBenchは、さまざまなサイズ、量子化レベル、タスクにわたるモデルを評価し、実際のデバイス上でのレイテンシとリソース消費を測定する。
論文 参考訳(メタデータ) (2024-06-12T22:58:12Z) - Efficient and Economic Large Language Model Inference with Attention Offloading [11.698376311689456]
トランスフォーマーベースの大規模言語モデル(LLM)は、生成タスクにおいて優れたパフォーマンスを示すが、現実のサービスにおいて大きな課題をもたらす。
このミスマッチは LLM の自己回帰的な性質から生じ、生成フェーズはリソース要求の異なる演算子から構成される。
LLMの効率性と費用対効果を高めるために,注意オフロードの概念を導入する。
論文 参考訳(メタデータ) (2024-05-03T02:15:15Z) - Random resistive memory-based deep extreme point learning machine for
unified visual processing [67.51600474104171]
ハードウェア・ソフトウェア共同設計型, ランダム抵抗型メモリベース深部極点学習マシン(DEPLM)を提案する。
我々の共同設計システムは,従来のシステムと比較して,エネルギー効率の大幅な向上とトレーニングコストの削減を実現している。
論文 参考訳(メタデータ) (2023-12-14T09:46:16Z) - Confidant: Customizing Transformer-based LLMs via Collaborative Edge
Training [18.526329975259483]
トランスフォーマーベースの大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおいて印象的な機能を示している。
コンピューティング、メモリ、エネルギー予算に制限のあるモバイルエッジデバイスにLSMをデプロイし、微調整することは困難である。
我々は,コモディティモバイルデバイス上での最先端のLCMをカスタマイズするためのマルチバックエンド協調学習フレームワークであるConfidantを提案する。
論文 参考訳(メタデータ) (2023-11-22T13:20:59Z) - Cheaply Evaluating Inference Efficiency Metrics for Autoregressive
Transformer APIs [66.30706841821123]
大規模言語モデル(LLM)は、自然言語処理において多くの最先端システムに電力を供給する。
LLMは、推論時でさえ非常に計算コストが高い。
モデル間での推論効率を比較するための新しい指標を提案する。
論文 参考訳(メタデータ) (2023-05-03T21:51:42Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
Adapter-ALBERTは、様々なタスクにわたる最大データ再利用のための効率的なモデル最適化である。
検証されたNLPエッジアクセラレータ上でシミュレーションを行うことにより、モデルを不均一なオンチップメモリアーキテクチャにマッピングする利点を実証する。
論文 参考訳(メタデータ) (2023-03-25T14:40:59Z) - EdgeViTs: Competing Light-weight CNNs on Mobile Devices with Vision
Transformers [88.52500757894119]
自己注意に基づく視覚変換器(ViT)は、コンピュータビジョンにおける畳み込みニューラルネットワーク(CNN)に代わる、非常に競争力のあるアーキテクチャとして登場した。
われわれはEdgeViTsを紹介した。これは新しい軽量ViTのファミリーで、注目に基づく視覚モデルが初めて、最高の軽量CNNと競合することを可能にする。
論文 参考訳(メタデータ) (2022-05-06T18:17:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。