論文の概要: Towards Better Statistical Understanding of Watermarking LLMs
- arxiv url: http://arxiv.org/abs/2403.13027v1
- Date: Tue, 19 Mar 2024 01:57:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-21 20:59:01.773742
- Title: Towards Better Statistical Understanding of Watermarking LLMs
- Title(参考訳): 透かしLLMの統計的理解に向けて
- Authors: Zhongze Cai, Shang Liu, Hanzhao Wang, Huaiyang Zhong, Xiaocheng Li,
- Abstract要約: 本稿では,大規模言語モデル(LLM)の透かし問題について検討する。
モデル歪みと検出能力のトレードオフと,Kirchenbauer et alのグリーンレッドリストに基づく制約付き最適化問題とみなす。
本稿では,この最適化定式化を考慮したオンライン二重勾配上昇透かしアルゴリズムを開発し,モデル歪みと検出能力の最適性を示す。
- 参考スコア(独自算出の注目度): 7.68488211412916
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we study the problem of watermarking large language models (LLMs). We consider the trade-off between model distortion and detection ability and formulate it as a constrained optimization problem based on the green-red algorithm of Kirchenbauer et al. (2023a). We show that the optimal solution to the optimization problem enjoys a nice analytical property which provides a better understanding and inspires the algorithm design for the watermarking process. We develop an online dual gradient ascent watermarking algorithm in light of this optimization formulation and prove its asymptotic Pareto optimality between model distortion and detection ability. Such a result guarantees an averaged increased green list probability and henceforth detection ability explicitly (in contrast to previous results). Moreover, we provide a systematic discussion on the choice of the model distortion metrics for the watermarking problem. We justify our choice of KL divergence and present issues with the existing criteria of ``distortion-free'' and perplexity. Finally, we empirically evaluate our algorithms on extensive datasets against benchmark algorithms.
- Abstract(参考訳): 本稿では,大規模言語モデル (LLM) の透かし問題について検討する。
モデル歪みと検出能力のトレードオフを考慮し,Kirchenbauer et al (2023a) のグリーンレッドアルゴリズムに基づく制約付き最適化問題として定式化する。
最適化問題に対する最適解法は、より理解し、ウォーターマーキングプロセスのアルゴリズム設計を刺激する優れた解析的性質を享受できることを示す。
本研究では,この最適化定式化を考慮したオンライン二重勾配上昇透かしアルゴリズムを開発し,その漸近的パレート最適性をモデル歪みと検出能力の間で証明する。
このような結果は、緑リストの確率が平均的に増加することを保証し、従って(以前の結果とは対照的に)明示的に検出する。
さらに,透かし問題に対するモデル歪み指標の選択について,系統的な考察を行った。
我々は、KLの発散の選択を正当化し、既存の「歪曲フリー」とパープレキシティの基準で問題を提示する。
最後に、ベンチマークアルゴリズムに対して、広範囲なデータセットでアルゴリズムを実証的に評価する。
関連論文リスト
- Universally Optimal Watermarking Schemes for LLMs: from Theory to Practice [35.319577498993354]
大きな言語モデル(LLM)は人間の効率を高めるが、誤用リスクを引き起こす。
本稿では,LLMの透かしのための新しい理論的枠組みを提案する。
我々は,検出性能を最大化するために,透かし方式と検出器の両方を共同で最適化する。
論文 参考訳(メタデータ) (2024-10-03T18:28:10Z) - Flow-based Distributionally Robust Optimization [23.232731771848883]
We present a framework, called $textttFlowDRO$, for solve flow-based distributionally robust optimization (DRO) problem with Wasserstein uncertainty set。
我々は、連続した最悪のケース分布(Last Favorable Distribution, LFD)とそれからのサンプルを見つけることを目指している。
本稿では、逆学習、分布論的に堅牢な仮説テスト、およびデータ駆動型分布摂動差分プライバシーの新しいメカニズムを実証する。
論文 参考訳(メタデータ) (2023-10-30T03:53:31Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - Uncovering the Over-smoothing Challenge in Image Super-Resolution: Entropy-based Quantification and Contrastive Optimization [67.99082021804145]
我々はDetail Enhanced Contrastive Loss (DECLoss)と呼ばれるCOO問題に対する明確な解決策を提案する。
DECLossはコントラスト学習のクラスタリング特性を利用して、潜在的な高分解能分布の分散を直接的に低減する。
我々は複数の超高解像度ベンチマーク上でDECLosを評価し,PSNR指向モデルの知覚品質を向上させることを実証した。
論文 参考訳(メタデータ) (2022-01-04T08:30:09Z) - Adaptive Importance Sampling for Finite-Sum Optimization and Sampling
with Decreasing Step-Sizes [4.355567556995855]
ステップサイズを小さくした有限サム最適化とサンプリングのための適応的重要度サンプリングのための簡易かつ効率的なアルゴリズムであるavareを提案する。
標準的な技術的条件下では、$mathcalO(T2/3)$と$mathcalO(T5/6)$の動的後悔をそれぞれ、$mathcalO(T5/6)$のステップサイズで実行するときに達成している。
論文 参考訳(メタデータ) (2021-03-23T00:28:15Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
本稿では,学習者が生成モデルにアクセスできる場合の,割引マルコフ決定(MDP)における最良の政治的識別の問題について検討する。
最先端アルゴリズムの利点を論じ、解説する。
論文 参考訳(メタデータ) (2020-09-28T15:22:24Z) - Robust, Accurate Stochastic Optimization for Variational Inference [68.83746081733464]
また, 共通最適化手法は, 問題が適度に大きい場合, 変分近似の精度が低下することを示した。
これらの結果から,基礎となるアルゴリズムをマルコフ連鎖の生成とみなして,より堅牢で正確な最適化フレームワークを開発する。
論文 参考訳(メタデータ) (2020-09-01T19:12:11Z) - Adaptive Sampling of Pareto Frontiers with Binary Constraints Using
Regression and Classification [0.0]
本稿では,二項制約を持つブラックボックス多目的最適化問題に対する適応最適化アルゴリズムを提案する。
本手法は確率的回帰モデルと分類モデルに基づいており,最適化目標のサロゲートとして機能する。
また,予想される超体積計算を高速化するために,新しい楕円形トランケーション法を提案する。
論文 参考訳(メタデータ) (2020-08-27T09:15:02Z) - Ensuring smoothly navigable approximation sets by Bezier curve
parameterizations in evolutionary bi-objective optimization -- applied to
brachytherapy treatment planning for prostate cancer [0.0]
決定空間における滑らかなベジエ曲線として近似集合をパラメータ化する場合について検討する。
高品質な近似集合をBezEAで得ることができ、時には支配とUHVに基づくアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-06-11T13:57:33Z) - Discovering Representations for Black-box Optimization [73.59962178534361]
ブラックボックス最適化符号化は手作業で行うのではなく,自動的に学習可能であることを示す。
学習された表現は、標準的なMAP-Elitesよりも桁違いに少ない評価で高次元の問題を解くことができることを示す。
論文 参考訳(メタデータ) (2020-03-09T20:06:20Z) - Active Model Estimation in Markov Decision Processes [108.46146218973189]
マルコフ決定過程(MDP)をモデル化した環境の正確なモデル学習のための効率的な探索の課題について検討する。
マルコフに基づくアルゴリズムは,本アルゴリズムと極大エントロピーアルゴリズムの両方を小サンプル方式で上回っていることを示す。
論文 参考訳(メタデータ) (2020-03-06T16:17:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。